The clinical utility of serum ferritin as a biomarker of disease severity and prognosis in Gaucher disease (GD) is still debated. Here, we aimed to evaluate ferritin and its relation to clinicolaboratory parameters of GD patients seen at the Reference Center for Gaucher Disease of Rio Grande do Sul, Brazil, so as to gather evidence on the utility of ferritin as a biomarker of this condition. A retrospective chart review was performed collecting pre-and posttreatment data from GD patients. Eighteen patients with ferritin levels available before and after treatment were included in the study. Nine of these participants were males, and seventeen had type I GD. All patients were given either enzyme replacement (n = 16) or substrate reduction therapy (n = 2), and ferritin was found to decrease from 756 [318-1441] ng/mL at baseline to 521 [227-626] ng/mL (p=0.025) after 28.8 month soft treatment. Serum ferritin levels did not correlate with measures of disease severity, but showed an association with age at onset of treatment (ρ= 0.880; n = 18; p < 0.001). In conclusion, although serum ferritin did not correlate with disease severity, after a median 28.8 months of treatment, clinical outcomes had clearly improved, and ferritin levels had decreased.
Mucolipidosis II alpha/beta is an autosomal recessive disorder caused by deficient activity of GlcNAc-1-phosphotransferase. We report the prenatal diagnosis of a fetus who was found to exhibit normal levels of lysosomal enzymes in the amniotic fluid but low levels in amniocytes, and who was found to be heterozygous for the most common GNPTAB mutation. As in some carriers of Mucolipidosis II biochemical abnormalities may hinder prenatal diagnosis, we suggest DNA analysis should be performed whenever possible.
Hepcidin, a peptide produced in the liver, decreases intestinal iron absorption and macrophage iron release by causing degradation of the iron exporter, ferroportin. Because its levels are inappropriately low in patients with iron overload syndromes, hepcidin is a potential drug target. We previously conducted a chemical screen that revealed ipriflavone, an orally available small molecule, as a potent inducer of hepcidin expression. To evaluate ipriflavone's effect on iron homeostasis, we placed groups of 5-week old wild type or thalassemia intermedia (HbbTh3+/−) mice on a soy-free, iron-sufficient diet, AIN-93G containing 220 mg iron and 0-750 mg ipriflavone per kg of food for 50 days. Ipriflavone 500 mg/kg significantly reduced liver iron stores and intestinal ferroportin expression in WT mice, while increasing the ratio of hepcidin transcript levels to liver iron stores. Ipriflavone supplementation in HbbTh3+/− mice failed to alleviate iron overload and was associated with a milder reduction in intestinal ferroportin and a failure to alter the ratio of hepcidin transcript levels to liver iron stores or splenic expression of the hepcidin-regulatory hormone, erythroferrone. These data suggest that dietary supplementation with ipriflavone alone would not be sufficient to treat iron overload in thalassemia intermedia.
Iron overload causes the generation of reactive oxygen species that can lead to lasting damage to the liver and other organs. The goal of this study was to identify genes that modify the toxicity of iron overload. We studied the effect of iron overload on the hepatic transcriptional and metabolomic profile in mouse models using a dietary model of iron overload and a genetic model, the hemojuvelin knockout mouse. We then evaluated the correlation of nicotinamide N‐methyltransferase (NNMT) expression with body iron stores in human patients and the effect of NNMT knockdown on gene expression and viability in primary mouse hepatocytes. We found that iron overload induced significant changes in the expression of genes and metabolites involved in glucose and nicotinamide metabolism and that NNMT, an enzyme that methylates nicotinamide and regulates hepatic glucose and cholesterol metabolism, is one of the most strongly down‐regulated genes in the liver in both genetic and dietary iron overload. We found that hepatic NNMT expression is inversely correlated with serum ferritin levels and serum transferrin saturation in patients who are obese, suggesting that body iron stores regulate human liver NNMT expression. Furthermore, we demonstrated that adenoviral knockdown of NNMT in primary mouse hepatocytes exacerbates iron‐induced hepatocyte toxicity and increases expression of transcriptional markers of oxidative and endoplasmic reticulum stress, while overexpression of NNMT partially reversed these effects. Conclusion: Iron overload alters glucose and nicotinamide transcriptional and metabolic pathways in mouse hepatocytes and decreases NNMT expression, while NNMT deficiency worsens the toxic effect of iron overload. For these reasons, NNMT may be a drug target for the prevention of iron‐induced hepatotoxicity. (Hepatology Communications 2017;1:803–815)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.