Fatigue failures of motor crankshafts operating in thermoelectric power plants have recently been reported. Stress fields provided by finite element calculations at critical points of a crankshaft that failed in service are used to test the structural integrity of the component. Taking into account the fact that the stresses acting at a given point are most likely out of phase, multiaxial fatigue criteria based on the von Mises stress are considered to be most suitable for predicting the fatigue behavior of the crankshaft. Using the von Mises stress, it was also possible to apply octahedral shear stress-based criteria and the results obtained have indicated that the crankshaft made of DIN 34CrNiMo6 steel should not suffer fatigue failure under the action of the stress fields in question. However, such failures have been occurring and this apparent discrepancy is presented and briefly discussed in the present study.
A study has been made of the influence of a superimposed mean shear stress on the capability of some multiaxial high cycle fatigue criteria to predicting fatigue behavior of 42CrMo4 and 34Cr4 alloy steels. Five selected critical plane-based criteria, namely Matake (M), Susmel & Lazzarin (S&L), Findley (F), Carpinteri & Spagnoli (C&S) and Liu & Mahadevan (L&M), were applied to a number of published experimental fatigue resistance limit tests, involving synchronous sinusoidal in-phase and out-of-phase bending and torsion. Applying to the same loading conditions a mesoscopic scale-based criterion proposed by Papadopoulos (P), one could verify that predictive capability of such an approach is almost invariably superior to those associated with the M, S&L, F, C&S and L&M models. As the Papadopoulos criterion is independent of mean shear stress, it seems appropriate to conclude that the inclusion of such a stress as loading parameter in the critical plane-based models does, in fact, exert a negative influence on their predictive capability. Finally, it is worth mentioning that, except for the Matake, S&L and L&M criteria, the other critical plane-based criteria exhibit a dependence of the fatigue resistance in pure torsion with respect to a superimposed mean shear stress, in disagreement with well-established experimental observations.
A direct relation where fatigue life can be determined as a function of macroscopic normal and shear stress amplitudes and is established. Using the Carpinteri & Spagnoli (C&S) criterion as a survey tool, elliptical‐level curves in the domain were revealed and further generalized, providing means to determine for any given combination. Predictions obtained through the elliptical curve method (E) were compared with experimental observations, as well as with predictions obtained from adapted versions of popular fatigue criteria, namely, Findley (F), Matake (M), McDiarmid (McD), Susmel & Lazzarin (S&L), C&S, and Papadopoulos (P). The proposed model delivered predictions in fair agreement with experimental observations, and its predictive capability was seen to be the best among all the considered criteria. Finally, a slight bias toward conservativeness was attenuated with the introduction of an adjusting parameter, further improving the predictive capability of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.