AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys39-Glu40 peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol.
Targeting of most newly synthesised peroxisomal matrix proteins to the organelle requires Pex5p, the so-called PTS1 receptor. According to current models of peroxisomal biogenesis, Pex5p interacts with these proteins in the cytosol, transports them to the peroxisomal membrane and catalyses their translocation across the membrane. Presently, our knowledge on the structural details behind the interaction of Pex5p with the cargo proteins is reasonably complete. In contrast, information regarding the structure of the Pex5p N-terminal half (a region containing its peroxisomal targeting domain) is still limited. We have recently observed that the Stokes radius of this Pex5p domain is anomalously large, suggesting that this portion of the protein is either a structured elongated domain or that it adopts a low compactness conformation. Here, we address this issue using a combination of biophysical and biochemical approaches. Our results indicate that the N-terminal half of Pex5p is best described as a natively unfolded premolten globule-like domain. The implications of these findings on the mechanism of protein import into the peroxisome are discussed.
Supramolecular hydrogels rely on small molecules that self-assemble in water as a result of the cooperative effect of several relatively weak intermolecular interactions. Peptide-based low molecular weight hydrogelators have attracted enormous interest owing to the simplicity of small molecules combined with the versatility and biocompatibility of peptides. In this work, naproxen, a well known non-steroidal anti-inflammatory drug, was N-conjugated with various dehydrodipeptides to give aromatic peptide amphiphiles that resist proteolysis. Molecular dynamic simulations were used to obtain insight into the underlying molecular mechanism of self-assembly and to rationalize the design of this type of hydrogelators. The results obtained were in excellent agreement with the experimental observations. Only dehydrodipeptides having at least one aromatic amino acid gave hydrogels. The characterization of the hydrogels was carried out using transmission electron microscopy (TEM), circular dichroism (CD), fluorescence spectroscopy and also rheological assays. Results and discussion SynthesisFive new dehydrodipeptides N-protected with naproxen (Npx) were prepared from the corresponding methyl esters of N-tertbutoxycarbonyl-β-hydroxydipeptides. The strategy deployed involved a dehydration reaction followed by cleavage of the tert-butoxycarbonyl group (Boc), reaction with (S)-(+)naproxen chloride and alkaline hydrolysis of the methyl esters (Scheme 1). The dehydroamino acids used were dehydrophenylalanine (∆Phe) and dehydroaminobutyric acid (∆Abu). This synthetic methodology was chosen to avoid racemization issues concerning the naproxen moiety. The N,Cdiprotected dipeptides having a β-hydroxyamino acid (Scheme 1, 1a-e) were dehydrated in good to high yields by treatment with tert-butyldicarbonate (Boc 2 O) and 4dimethylaminopyridine (DMAP) followed by N,N,N',N'tetramethylguanidine (TMG) 17 (Scheme 1, 2a-e). The Boc group was removed with trifluoroacetic acid (TFA) (Scheme 1, 3a-e) and the N-deprotected dehydrodipeptides were conjugated with (S)-(+)-naproxen (Scheme 1, 4a-e). Finally, the methyl esters were removed by treatment with a solution of NaOH (1 M) affording compounds 5a-e in good yields (Scheme 1).
The aggregation of proteins into insoluble amyloid fibrils is the hallmark of many, highly debilitating, human pathologies such as Alzheimer's or Parkinson's disease. Transthyretin (TTR) is a homotetrameric protein implicated in several amyloidoses like Senile Systemic Amyloidosis (SSA), Familial Amyloid Polyneuropathy (FAP), Familial Amyloid Cardiomyopathy (FAC), and the rare Central Nervous System selective Amyloidosis (CNSA). In this work, we have investigated the kinetics of TTR aggregation into amyloid fibrils produced by the addition of NaCl to acid-unfolded TTR monomers and we propose a mathematically simple kinetic mechanism to analyse the aggregation kinetics of TTR. We have conducted circular dichroism, intrinsic tryptophan fluorescence and thioflavin-T emission experiments to follow the conformational changes accompanying amyloid formation at different TTR concentrations. Kinetic traces were adjusted to a two-step model with the first step being second-order and the second being unimolecular. The molecular species present in the pathway of TTR oligomerization were characterized by size exclusion chromatography coupled to multi-angle light scattering and by transmission electron microscopy. The results show the transient accumulation of oligomers composed of 6 to 10 monomers in agreement with reports suggesting that these oligomers may be the causative agent of cell toxicity. The results obtained may prove to be useful in understanding the mode of action of different compounds in preventing fibril formation and, therefore, in designing new drugs against TTR amyloidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.