A thorough millimeter-wave measurement campaign is carried out in an indoor environment with an aim at characterizing the short-term fading channel behavior. The measurements are conducted in a variety of scenarios, with frequencies ranging from 55 GHz to 65 GHz, in line-of-sight and nonline-of-sight conditions, and combinations of horizontal and vertical polarizations at both transmitter and receiver. A number of fading models are tested, namely Rayleigh, Rice, Nakagami-m, α-µ, κ-µ, η-µ, and α-η-κ-µ. The statistics under analysis are those characterizing the fading amplitude and the frequency selectivity. In particular, the probability density and cumulative distribution functions for the former and level crossing rate per bandwidth unit for the latter are the respective first-and second-order statistics used. To this end, from the experimental data, the parameters of the models are estimated and the corresponding theoretical curves are plotted and compared with the empirical ones. Whereas the required theoretical formulations of the first-order statistics of these models are already well known, those of the second-order statistics as well as these fitting process in such a band shown here are unprecedented in the literature.
We report the implementation of an optical-wireless 5G network based on generalized frequency division multiplexing (GFDM) and multi-Gbit/s communication. Dual-drive Mach-Zehnder modulator was employed, enabling simultaneously RF signals transport using two 5G candidate bands, namely: 26 GHz band for providing a femtocell with 2 Gbit/s throughput; 700 MHz band for enabling rural access applying a supercell. A vector signal generator provides the broadband 26 GHz signal. The Brazilian GFDM-based 5G transceiver generates the lower-frequency signal, with the advantage of low out-of-band emission. An experimental digital performance analysis illustrates the suitability of the proposed solution to address 5G requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.