The Search Engine Processor (SEPro) is a tool for filtering, organizing, sharing, and displaying peptide spectrum matches. It employs a novel three-tier Bayesian approach that uses layers of spectrum, peptide, and protein logic to lead the data to converge to a single list of reliable protein identifications. SEPro is integrated into the PatternLab for proteomics environment, where an arsenal of tools for analyzing shotgun proteomic data is provided. By using the semi-labeled decoy approach for benchmarking, we show that SEPro significantly outperforms a commercially available competitor.
Homology-driven proteomics is a major tool to characterize proteomes of organisms with unsequenced genomes. This paper addresses practical aspects of automated homology-driven protein identifications by LC-MS/MS on a hybrid LTQ Orbitrap mass spectrometer. All essential software elements supporting the presented pipeline are either hosted at the publicly accessible web server, or are available for free download.
Chemical cross-linking has emerged as a powerful approach for the structural characterization of proteins and protein complexes. However, the correct identification of covalently linked (cross-linked or XL) peptides analyzed by tandem mass spectrometry is still an open challenge. Here we present SIM-XL, a software tool that can analyze data generated through commonly used cross-linkers (e.g., BS3/DSS). Our software introduces a new paradigm for search-space reduction, which ultimately accounts for its increase in speed and sensitivity. Moreover, our search engine is the first to capitalize on reporter ions for selecting tandem mass spectra derived from cross-linked peptides. It also makes available a 2D interaction map and a spectrum-annotation tool unmatched by any of its kind. We show SIM-XL to be more sensitive and faster than a competing tool when analyzing a data set obtained from the human HSP90. The software is freely available for academic use at http://patternlabforproteomics.org/sim-xl. A video demonstrating the tool is available at http://patternlabforproteomics.org/sim-xl/video. SIM-XL is the first tool to support XL data in the mzIdentML format; all data are thus available from the ProteomeXchange consortium (identifier PXD001677). This article is part of a Special Issue entitled: Computational Proteomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.