Proposal techniques that reduce financial costs in the diagnosis and treatment of animal diseases are welcome. This work uses some machine learning techniques to classify whether or not cases of canine visceral leishmaniasis are present by physical examinations. For validation of the method, four machine learning models were chosen: K-nearest neighbor, Naïve Bayes, support vector machine and logistic regression models. The tests were performed on three hundred and forty dogs, using eighteen characteristics of the animal and the ELISA (enzyme-linked immunosorbent assay) serological test as validation. Logistic regression achieved the best metrics: Accuracy of 75%, sensitivity of 84%, specificity of 67%, a positive likelihood ratio of 2.53 and a negative likelihood ratio of 0.23, showing a positive relationship in the evaluation between the true positives and rejecting the cases of false negatives.
This work focuses on finding a numerical solution for vehicle acoustic studies and improving the usefulness of the numerical experimental parameters for the development stage of a new automotive project. Specifically, this research addresses the importance of modal cavity damping for vehicle exerts during numerical studies. It then seeks to suggest standardized parameter values of modal cavity damping in vehicular acoustic studies.The standardized value of modal cavity damping is of great importance for the study of vehicular acoustics in the automotive industry because it would allow the industry to begin studies of the acoustic performance of a new vehicle early in the conception phase with a reliable estimation that would be close to the final value measured in the design phase. It is common for the automotive industry to achieve good levels of numerical-experimental correlation in acoustic studies after the prototyping phase because this phase can be studied with feedback from the simulation and experimental modal parameters.Thus, this research suggests values for modal cavity damping, which are divided into two parts due to their behaviour: ξ(x) = −0.0126(x − 100) + 6.15 as a variable function to analyse up to 100 Hz and 6.15% of modal cavity damping constant for studies between 30 Hz and 100 Hz.The sequence of this study shows how we arrived at these values.
RESUMOEste estudo aborda a técnica de modelagem da resposta acústica de um veículo automotor. Esta pesquisa discorre sobre a construção de modelos numéricos em elementos finitos para investigar o efeito da utilização de componentes móveis (capô, portas laterais e tampa do porta malas) na resposta acústica de um veículo. Para tanto, foram construídos dois modelos: um que abrange a utilização de todos os componentes móveis, e outro, que substitui cada componente móvel por elementos unidimensionais (1D), contendo apenas a massa e a inércia que representa cada um destes componentes. A resposta obtida em cada uma das etapas da simulação numérica é comparada com os resultados experimentais, a fim de validar o procedimento e compreender a significância da utilização de um modelo numérico simplificado e assim, validar um modelo simplificado capaz de reproduzir computacionalmente e de forma satisfatória a resposta acústica de um veículo. A utilização do referido modelo simplificado possibilita a indústria automotiva realizar estudos sobre a performance acústica de um veículo de forma antecipada, uma vez que não necessita esperar o desenvolvimento destes componentes. Como investigado nesta pesquisa, a influência de componentes móveis sobre a resposta acústica do modelo numérico completo é pequena quando comparado à resposta obtida pelo modelo simplificado. Por meio de uma segunda
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.