This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved 2nd and 1st place, respectively. We also discuss CoSTAR's demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including: (i) geometric and semantic environment mapping; (ii) a multi-modal positioning system; (iii) traversability analysis and local planning; (iv) global motion planning and exploration behavior; (i) risk-aware mission planning; (vi) networking and decentralized reasoning; and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g. wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.
Since the end of the 1990s, there has been an increasing interest in the application of artificial intelligence (AI) planning techniques to solve real-life problems. In addition to characteristics of academic problems, such as the need to reason about actions, real-life problems require detailed knowledge elicitation, engineering, and management. A systematic design process in which Knowledge and Requirements Engineering tools play a fundamental role is necessary in such applications. One of the main challenges in such design process, and consequently in the study of Knowledge Engineering in AI planning, has been the analysis of requirements and their subsequent transformation into an input-ready model for planners. itSIMPLE is a research project dedicated to the study of a project process to support the design phases of real-life planning models. In this paper, we give an overview of itSIMPLE focusing on the main translation processes among a minimal set of representations: from requirements represented in Unified Modeling Language (UML) to Petri Nets and from UML models to planning domain definition language for problem solving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.