Female mice fed a cafeteria diet (FCaf) develop higher liver steatosis and oxidative stress than males (MCaf) as a consequence of unresolved ER stress. Here, we investigated whether mitochondria play a role in this sex difference. The isolated mitochondria from FCaf showed more signs of oxidative stress than those of MCaf, correlated with a reduced content of GSH, increased amount of reactive oxygen species (ROS), and lower activities of enzymes involved in ROS neutralisation. Mitochondria from FCaf and MCaf livers exhibited lower rates of succinate-driven state III respiration and reduced ATPase activity in intact coupled mitochondria compared to their controls fed a standard diet (FC and MC), with no differences between the sexes. Fatty acid oxidation in mitochondria and peroxisomes was higher in MCaf and FCaf compared to their respective controls. In the intact perfused liver, there was no difference between sex or diet regarding the fatty acid oxidation rate. These results indicated that cafeteria diet did not affect mitochondrial energy metabolism, even in FCaf livers, which have higher steatosis and cellular oxidative stress. Nevertheless, the increase in mitochondrial ROS generation associated with a decrease in the antioxidant defence capacity, probably contributes to inducing or reinforcing the ER stress in FCaf livers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.