The efficient capture of drug metabolites from aquatic environments has been recognized as an essential task for environmental protection. A methanol-modified ultra-fine magnetic biochar (CH3OH-OP-char/Fe3O4) was prepared from orange peel powder using ball milling, and its adsorption behaviors for ibuprofen and sulfamethoxazole were evaluated. The obtained materials were characterized by laser particle size analyzer, EA, ICP-OES, VSM, BET, TG-DTG, and FTIR. Furthermore, the experiments were conducted to study the vital operating parameters such as solution pH (2.0–11.0), contact time (0.5–240 min), initial drug concentration (0.5–100 mg/L), and temperatures (15–40°C) on the removal process. The results showed that the adsorption of IBP and sulfamethoxazole on CH3OH-OP-char/Fe3O4 was highly pH-dependent. Kinetic studies indicated that physisorption was the dominant adsorption mechanism, and film diffusion played a vital role in adsorption onto CH3OH-OP-char/Fe3O4. Equilibrium data were fitted well with the Langmuir isotherm model, implying monolayer adsorption. The adsorption process was spontaneous and endothermic due to the thermodynamic calculation, and high temperatures were favorable to the adsorption process.
Single-component and competitive adsorption of tetracycline (TC) and Zn(ii) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar (NH4Cl-BHP-char/Fe3O4) was investigated in batch experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.