Abstract:Recently lead halide nanocrystals (quantum dots) have been reported with potential for photovoltaic and optoelectronic applications due to their excellent luminescent properties. Herein excitonic photoluminescence (PL) excited by two-photon absorption in perovskite CsPbBr3 quantum dots (QDs) have been studied across a broad temperature range from 80K to 380K. Twophoton absorption has been investigated with absorption coefficient up to 0.085 cm/GW at room temperature. Moreover, the photoluminescence excited by two-photon absorption shows a linear blue-shift (0.25meV/K) below temperature of ~220K and turned steady with fluctuation below 1nm (4.4meV) for higher temperature up to 380K. These phenomena are distinctly different from general red-shift of semiconductor and can be explained by the competition between lattice expansion and electron−phonon coupling. Our results reveal the strong nonlinear absorption and temperatureindependent chromaticity in a large temperature range from 220K to 380K in the CsPbX3 QDs, which will offer new opportunities in nonlinear photonics, light-harvesting and light-emitting devices.
Reversible data embedding has drawn lots of interest recently. Being reversible, the original digital content can be completely restored. In this paper, we present a novel reversible dataembedding method for digital images. We explore the redundancy in digital images to achieve very high embedding capacity, and keep the distortion low.
Electromagnetic invisibility cloak requires material with anisotropic distribution of the constitutive parameters as first proposed by Pendry et al. [Science 312, 1780 (2006)]. In this paper, we proposed an electromagnetic cloak structure that does not require metamaterials with subwavelength structured inclusions to realize the anisotropy or inhomogeneity of the material parameters. We constructed a concentric layered structure of alternating homogeneous isotropic materials that can be treated as an effective medium with the required radius-dependent anisotropy. With proper design of the permittivity or the thickness ratio of the alternating layers, we demonstrated the low-reflection and power-flow bending properties of the proposed cloaking structure through rigorous analysis of the scattered electromagnetic fields. The proposed cloaking structure could be possibly realized by normal materials, therefore may lead to a practical path to an experimental demonstration of electromagnetic cloaking, especially in the optical range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.