Direction of arrival (DOA) estimation via sensor array is a crucial component of any passive sonar signal processing technology. In certain practical applications, however, the interested far-field targets are frequently affected by near-field interference, which may result in degradation of DOA estimation. Aiming at the direction estimation problems of far-field targets under strong near-field interference, a unified sparse representation model of far-field and near-field hybrid sources is constructed according to the various correlations in steering vectors between the planar wave and spherical wave in this paper. A high-resolution spatial spectrum reconstruction algorithm based on a sparse Bayesian framework is then exploited to constrain the energy of near-field interference in the preset near-field steering vector over-complete dictionary, thus ensuring the accurate detection and estimation of far-field targets. An expectation-maximization (EM) algorithm approach is introduced to estimate the number of sources and noise power iteratively, which will reduce the dependence of the algorithm on such prior information. Several state-of-art algorithms are mentioned and discussed (Minimum Variance Distortionless Response (MVDR) method, Multiple Signal Classification (MUSIC) algorithm and conventional beamforming (CBF) algorithm) to compare with the one proposed in this manuscript that achieves higher accuracy of estimation and resolution under low SNR level with limited samples, which is verified by simulation and for the results obtained in an experimental case study.
Direction-of-arrival (DOA) estimation in a spatially isotropic white noise background has been widely researched for decades. However, in practice, such as underwater acoustic ambient noise in shallow water, the ambient noise can be spatially colored, which may severely degrade the performance of DOA estimation. To solve this problem, this paper proposes a DOA estimation method based on sparse Bayesian learning with the modified noise model using acoustic vector hydrophone arrays. Firstly, an applicable linear noise model is established by using the prolate spheroidal wave functions (PSWFs) to characterize spatially colored noise and exploiting the excellent performance of the PSWFs in extrapolating band-limited signals to the space domain. Then, using the proposed noise model, an iterative method for sparse spectrum reconstruction is developed under a sparse Bayesian learning (SBL) framework to fit the actual noise field received by the acoustic vector hydrophone array. Finally, a DOA estimation algorithm under the modified noise model is also presented, which has a superior performance under spatially colored noise. Numerical results validate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.