A new method based on the weighted fusion of multiple models is presented for wavelength selection in multivariate calibration of spectral data. It fuses the regression coefficients of multiple models with weights based on minimum mean square error to improve the accuracy and stability of the wavelength selection. To validate the performance of the proposed method, it was applied to the partial least squares (PLS) modeling of three near-infrared spectral datasets and compared with full-spectrum PLS, genetic algorithm-based PLS, and uninformative variable elimination-based PLS methods. Results show that the proposed method can effectively select the informative wavelength and enhance the prediction ability of the PLS model. On account of its simpler algorithm and higher efficiency, it can be widely used in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.