MicroRNAs (miRNAs) are small non-coding RNAs that regulate the expression of other genes by transcriptional inhibition or translational repression. miR-34a is a known tumor suppressor gene and inhibits abnormal cell growth. However, its role in other tumorigenic processes is not fully known. This study aimed to investigate the action of miR-34a on cell invasion. We found that miR-34a is expressed at various levels in cervical cancer (HeLa, SiHa, C4I, C33a and CaSki) and trophoblast (BeWo and JAR) cell lines. Transient forced expression of miR-34a did not affect the proliferation of these cell lines. Computational miRNA target prediction suggested that Notch1 and Jagged1 were targets of miR-34a. By using functional assays, miR-34a was demonstrated to bind to the 3' untranslated regions of Notch1 and Jagged1. Forced expression of miR-34a altered the expression of Notch1 and Jagged1 protein as well as Notch signaling as shown by the response of Hairy Enhancer of Split-1 protein to these treatments using western blot analysis. Forced expression of miR-34a suppressed the invasiveness of HeLa and JAR cells. By using gamma-secretase inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) that interfered Notch signaling and RNA interference that knockdown Notch1 expression, we confirmed that downregulation of Notch1 reduced the invasiveness of the cells. Transfection of intracellular domain of Notch nullifies the effect of miR-34a on the invasiveness of the cells. Besides, we identified that miR-34a affected cell invasion by regulating expression of urokinase plasminogen activator through Notch. Our results provide evidence that miR-34a inhibits invasiveness through regulation of the Notch pathway and its downstream matrix degrading enzyme.
Human papillomaviruses (HPVs) is the principal etiological agent of cervical cancer (CC). However, exposure to the high-risk type HPV alone is insufficient for tumor formation, and additional factors are required for the HPV-infected cells to become tumorigenic. Dysregulated microRNAs (miRNAs) expression is frequently observed in cancer but their roles in the formation of CC have not been fully revealed. In this study, we compared the expression of miR-135a in laser capture microdissected cervical specimens and confirmed overexpression of the miRNA in malignant cervical squamous cell carcinoma compared with precancerous lesions. Transient force-expression of miR-135a induced growth in low-density culture, anchorage-independent growth, proliferation and invasion of a HPV-16 E6/E7-immortalized cervical epithelial cell line, NC104-E6/E7. The observed effects were due to the inhibitory action of miR-135a on its direct target seven in absentia homolog 1 (SIAH1) leading to upregulation of β-catenin/T cell factor signaling. miR-135a force-expression enhanced the growth of HeLa- and NC104-E6/E7-derived tumor in vivo. The effect of miR-135a could be partially nullified by SIAH1 force-expression. More importantly, the expression of SIAH1 and β-catenin correlated with that of miR-135a in precancerous and cancerous lesions of cervical biopsies. By comparing the tumorigenic activities of miR-135a in E6/E7 positive/negative cell lines and in NC104-E6/E7 with or without E6/E7 knockdown, we demonstrated that HPV E6/E7 proteins are prerequisite for miR-135a as an oncomiR. Taken together, miR-135a/SIAH1/β-catenin signaling is important in the transformation and progression of cervical carcinoma.
BackgroundChoriocarcinoma is a gestational trophoblastic tumor which causes high mortality if left untreated. MicroRNAs (miRNAs) are small non protein-coding RNAs which inhibit target gene expression. The role of miRNAs in choriocarcinoma, however, is not well understood. In this study, we examined the effect of miR-34a in choriocarcinoma.MethodsMiR-34a was either inhibited or ectopically expressed transiently in two choriocarcinoma cell lines (BeWo and JEG-3) respectively. Its actions on cell invasion, proliferation and colony formation at low cell density were examined. The miR-34a putative target Notch ligand Delta-like 1 (DLL1) was identified by adoption of different approaches including: in-silico analysis, functional luciferase assay and western blotting. Real-time quantitative polymerase chain reaction was used to quantify changes in the expression of matrix proteinase in the treated cells. To nullify the effect of miR-34a ectopic expression, we activated Notch signaling through force-expression of the Notch intracellular domain in the miR-34a force-expressed cells. In addition, we studied the importance of DLL1 in BeWo cell invasion through ligand stimulation and antibody inhibition. Furthermore, the induction in tumor formation of miR-34a-inhibited BeWo cells in SCID mice was investigated.ResultsTransient miR-34a force-expression significantly suppressed cell proliferation and invasion in BeWo and JEG-3 cells. In silicon miRNA target prediction, luciferase functional assays and Western blotting analysis demonstrated that miR-34a regulated DLL1 expression in both cell lines. Although force-expression of miR-34a suppressed the expression of DLL1 and NOTCH1, the extent of suppression was higher in DLL1 than NOTCH1 in both cell lines. MiR-34a-mediated DLL1 suppression led to reduced matrix metallopeptidase 9 and urokinase-type plasminogen activator expression. The effect of miR-34a on cell invasion was partially nullified by Notch signaling activation. DLL1 ligand stimulated while anti-DLL1 antibody treatment suppressed cell invasion. Mice inoculated with BeWo cells transfected with miR-34a inhibitor had significantly larger xenografts and stronger DLL1 expression than those with cells transfected with the control inhibitor.ConclusionsMiR-34a reduced cell proliferation and invasiveness, at least, partially through its inhibitory effect on DLL1.
BackgroundMicroRNAs (miRNAs) are small non-coding RNA molecules capable of regulating transcription and translation. Previously, a cluster of miRNAs that are specifically expressed in mouse zygotes but not in oocytes or other preimplantation stages embryos are identified by multiplex real-time polymerase chain reaction-based miRNA profiling. The functional role of one of these zygote-specific miRNAs, miR-135a, in preimplantation embryo development was investigated.Methodology/Principal FindingsMicroinjection of miR-135a inhibitor suppressed first cell cleavage in more than 30% of the zygotes. Bioinformatics analysis identified E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (Siah1a) as a predicted target of miR-135a. Western blotting and 3′UTR luciferase functional assays demonstrated that miR-135a down-regulated the expression of Siah1 in HeLa cells and in mouse zygotes. Siah1a was expressed in preimplantation embryos and its expression pattern negatively correlated with that of miR-135a. Co-injection of Siah1a-specific antibody with miR-135a inhibitor partially nullified the effect of miR-135a inhibition. Proteasome inhibition by MG-132 revealed that miR-135a regulated proteasomal degradation and potentially controlled the expression of chemokinesin DNA binding protein (Kid).Conclusions/SignificanceThe present study demonstrated for the first time that zygotic specific miRNA modulates the first cell cleavage through regulating expression of Siah1a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.