We present a new method of comb-locked cavity ring-down spectroscopy for the Lamb-dip measurement of molecular ro-vibrational transitions. By locking both the probe laser frequency and a temperature-stabilized high-finesse cavity to an optical frequency comb, we realize saturation spectroscopy of molecules with kilohertz accuracy. The technique is demonstrated by recording the R(9) line in the υ = 3 - 0 overtone band of CO near 1567 nm. The Lamb-dip spectrum of such a weak line (transition rate 0.0075 s) is obtained using an input laser power of only 3 mW, and the position is determined to be 191 360 212 770 kHz with an uncertainty of 7 kHz (δν/ν∼3.5×10), which is currently limited by our rubidium clock.
Precision measurement of ro-vibrational transitions in the electronic ground state of the hydrogen molecule can be used to test quantum electrodynamics and also to determine the dimensionless proton-to-electron mass ratio. Saturation spectroscopy of the 2-0 overtone transitions of hydrogen deuterium (HD) were measured with three cavity-enhanced spectroscopy methods. With a sensitivity at the
10
−
13
c
m
−
1
level, we revealed a dispersion-like lineshape instead of a conventional Lamb “dip,” which explains the significant discrepancy among previous independent measurements. The spectra can be fit well by using the Fano profile. Centers of R(1) and R(3) lines were determined as 217 105 182 111
(
19
)
s
t
a
t
(
240
)
s
y
s
k
H
z
and 220 704 305 234
(
20
)
s
t
a
t
(
240
)
s
y
s
k
H
z
, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.