In order to detect non-cooperative target UAV quickly and accurately, a novel method of UAV detection method based on graph theory and HOG-FLD feature fusion is presented in this paper. In order to avoid the time-consuming full search, the candidate areas of the UAV are obtained through the selective search of the image segmentation and the similarity, and the features are extracted through the method of gradient orientation histogram fusion FLD linear to train the SVM classifier with generalization ability to identify the UAV. The method can detect the UAV quickly and accurately under complicated background and circumstances of various position and angle. Compared with the sliding window method based on image segmentation and HOG+SVM, the experimental results show that the speed of this method has been obviously improved with the same recognition accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.