The waste heat emissions of thermal discharge from floating nuclear power plants may have a negative thermal effect on the environment. Study on the dilution and diffusion of cooling water plays an important role in thermal pollution prevention. The cooling water discharge process can be condensed into the thermal jet in cross flow. According to the theory of computational fluid dynamics, the mathematical model of round horizontal thermal jets in cross flow is established. The 3D numerical simulation of thermal jets based on finite volume method is achieved by using the Realizable k-ε turbulence model and the Semi-implicit method for pressure linked equations, and the three-dimensional trajectory of thermal jet are obtained. The rationality of analysis method is approved by comparing calculation value with experimental value. The temperature distributions in thermal jets are studied through the numerical experiments conducted under different cross-flow velocity and different emission angle. As a result, the impacts of these conditions on thermal pollution area are found, and the theoretic bases are provided for the design of the cooling water discharge pipe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.