Despite being a low-abundance amino acid, cysteine plays an essential role in regulating protein function and serves as a satisfactory target of post-translational modifications and drug developments. To comprehensively assess reactive-cysteine-containing proteins, the development of chemical proteomic probes to label cysteine residues in human cells is an important objective. Cysteine modification using sulfonium-based probes is a novel method to identify reactive cysteine residues in proteins. Herein, we reported a set of "cysteine-reactive sulfonium-based (C-Sul)" probes to label the reactive cysteine sites in cellular proteins. Notably, water-soluble C-Sul probes have a significantly enhanced stability and cellular uptakes, displaying a high specificity toward reactive cysteines and compatibility with quantitative proteomic profiling. In comparison to the conventional iodoacetamide-based probe, C-Sul particularly has no inhibitory effects on cell viability, enabling its application in proteomic profiling of reactive cysteine residues under biorelevant conditions. We propose C-Sul probes as optimal tools of cysteine profiling for further broadly basic research.
Elevated IgG expression in cancer cells has been implicated in exacerbated malignancy and poor clinical prognosis. Accumulating evidence indicates that a nonconventional sialylation modification is critical for the function of cancer-derived IgG, indicating the need for a better understanding of the regulatory mechanisms that control the expression and function of sialylated cancer IgG (SIA-cIgG). Here, we conducted genome-wide CRISPR activation screening and identified OCT4 and SOX2 as the key factors that promote SIA-cIgG expression. Functional investigation revealed that SIA-cIgG reciprocally stimulated SOX2 by activating the c-Met/Akt/Erk signaling axis, constituting a self-propagating loop of SIA-cIgG/c-Met/SOX2/SIA-cIgG signaling. This signaling loop was highly active in stem-like cells from many epithelial cancers and was crucial for cancer stemness in vitro and in vivo. Notably, the monoclonal antibody RP215, which specifically recognizes the Asn162 sialylation-related epitope on SIA-cIgG, effectively blocked the SIA-cIgG-driven signaling loop. Furthermore, RP215 significantly inhibited lung cancer cell stemness and tumor growth in a patient-derived xenograft model. In conclusion, these findings revealed a self-propagating c-Met/SOX2/SIA-cIgG signaling loop that promotes cancer stemness, identifying novel therapeutic strategies for cancer treatment.
<div>Abstract<p>Elevated IgG expression in cancer cells has been implicated in exacerbated malignancy and poor clinical prognosis. Accumulating evidence indicates that a nonconventional sialylation modification is critical for the function of cancer-derived IgG, indicating the need for a better understanding of the regulatory mechanisms that control the expression and function of sialylated cancer IgG (SIA-cIgG). Here, we conducted genome-wide CRISPR activation screening and identified OCT4 and SOX2 as the key factors that promote SIA-cIgG expression. Functional investigation revealed that SIA-cIgG reciprocally stimulated SOX2 by activating the c-Met/Akt/Erk signaling axis, constituting a self-propagating loop of SIA-cIgG/c-Met/SOX2/SIA-cIgG signaling. This signaling loop was highly active in stem-like cells from many epithelial cancers and was crucial for cancer stemness <i>in vitro</i> and <i>in vivo</i>. Notably, the mAb RP215, which specifically recognizes the Asn162 sialylation–related epitope on SIA-cIgG, effectively blocked the SIA-cIgG–driven signaling loop. Furthermore, RP215 significantly inhibited lung cancer cell stemness and tumor growth in a patient-derived xenograft model. In conclusion, these findings revealed a self-propagating c-Met/SOX2/SIA-cIgG signaling loop that promotes cancer stemness, identifying novel therapeutic strategies for cancer treatment.</p>Significance:<p>Sialylated cancer IgG activates c-Met-SOX2 signaling to promote stemness properties in cancer cells and can be targeted to suppress tumor growth.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.