Previous studies have reported that lncRNA PVT1 was closely related to ischemic stroke. Here, the role of PVT1 in ischemic stroke and the underlying mechanism were investigated. OGDR-stimulated PC12 cells were used to construct a cell model to mimic ischemic stroke. si-PVT1, miR-214 mimic, inhibitor, or the negative controls were transfected into PC12 cells prior to OGDR treatment. PVT1, miR-214, and Gpx1 expression was measured by qRT-PCR and western blotting assays. Cell proliferation and apoptosis were tested by CCK-8 assay and western blotting. The expression levels of inflammatory factors were determined by ELISA Kit. Results showed that PVT1 was increased significantly in OGDR PC12 cells. PVT1 knockdown significantly enhanced cell viability and attenuated cell apoptosis, ROS generation, and inflammation in OGDR PC12 cells. More importantly, PVT1 or Gpx1 was a target of miR-214. Mechanistically, PVT1 acted as a competing endogenous RNA of miR-214 to regulate the downstream gene Gpx1. In conclusion, PVT1 knockdown attenuated OGDR PC12 cell injury by modulating miR-214/Gpx1 axis. These findings offer a potential novel strategy for ischemic stroke therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.