Vascular dementia (VD) has been one of the most serious public health problems worldwide. It is well known that cerebral hypoperfusion is the key pathophysiological basis of VD, but it remains unclear how global genes in hippocampus respond to cerebral ischemia-reperfusion. In this study, we aimed to reveal the global gene expression profile in the hippocampus of VD using a rat model. VD was induced by repeated occlusion of common carotid arteries followed by reperfusion. The rats with VD were characterized by deficit of memory and cognitive function and by the histopathological changes in the hippocampus, such as a reduction in the number and the size of neurons accompanied by an increase in intercellular space. Microarray analysis of global genes displayed up-regulation of 7 probesets with genes with fold change more than 1.5 (P < 0.05) and down-regulation of 13 probesets with genes with fold change less than 0.667 (P < 0.05) in the hippocampus. Gene Ontology (GO) and pathway analysis showed that the up-regulated genes are mainly involved in oxygen binding and transport, autoimmune response and inflammation, and that the down-regulated genes are related to glucose metabolism, autoimmune response and inflammation, and other biological process, related to memory and cognitive function. Thus, the abnormally expressed genes are closely related to oxygen transport, glucose metabolism, and autoimmune response. The current findings display global gene expression profile of the hippocampus in a rat model of VD, providing new insights into the molecular pathogenesis of VD.
Apoptosis and the dysfunction of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-responsive element binding protein (CREB) signaling pathway have a key role in memory impairment in vascular dementia (VaD), a challenging clinical problem. Yifei Xuanfei Jiangzhuo formula (YXJF), a Chinese herbal decoction, has been used to treat VaD in clinical practice and has produced positive outcomes; however, convincing evidence is currently lacking. The present study aimed to investigate the effects of YXJF on memory impairment in rats with cerebral ischemia/reperfusion and to explore the underlying mechanism. YXJF ameliorated memory impairment in rats with cerebral ischemia/reperfusion, inhibited hippocampal apoptosis in a dose-dependent manner and attenuated increases in the protein expression of B-cell lymphoma 2 (Bcl-2)-associated X protein as well as c-Jun and a reduction in Bcl-2 protein expression in the hippocampal tissue of the rats. Furthermore, administration of YXJF significantly increased the protein expression of PKA C-α and CREB, and promoted CREB phosphorylation. The results indicated that YXJF improves memory impairment through inhibiting apoptosis and enhancing PKA/CREB signal transduction in rats with cerebral ischemia/reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.