Piezoelectric energy harvester (PEH) is emerging as a novel device which can convert mechanical energy into electrical energy. It is mainly used to collect ambient vibration energy to power sensors, chips and some other small applications. This paper first introduces the working principle of PEH. Then, the paper elaborates the research progress of PEH from three aspects: piezoelectric materials, piezoelectric modes and energy harvester structures. Piezoelectric material is the core of the PEH. The piezoelectric and mechanical properties of piezoelectric material determine its application in energy harvesting. There are three piezoelectric modes, d 31 , d 33 and d 15 , the choice of which influences the maximum output voltage and power. Matching the external excitation frequency maximizes the conversion efficiency of the energy harvester. There are three approaches proposed in this paper to optimize the PEH's structure and match the external excitation frequency, i.e., adjusting the resonant frequency, frequency up-converting and broadening the frequency bandwidth. In addition, harvesting maximum output power from the PEH requires impedance matching. Finally, this paper analyzes the above content and predicts PEH's future development direction.
Abstract-In this paper, the influence of TSV geometry parameters on transmission performance is analyzed and some TSV design references are given according to the simulation results. In addition, including coplanar waveguide (CPW) and microstrip line (MSL), two main signal line structures of RDL layer are studied and their transmission performance is compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.