A record high zT of 2.2 at 740 K is reported in Ge0.92Sb0.08Te single crystals, with an optimal hole carrier concentration ≈4 × 1020 cm−3 that simultaneously maximizes the power factor (PF) ≈56 µW cm−1 K−2 and minimizes the thermal conductivity ≈1.9 Wm−1 K−1. In addition to the presence of herringbone domains and stacking faults, the Ge0.92Sb0.08Te exhibits significant modification to phonon dispersion with an extra phonon excitation around ≈5–6 meV at Γ point of the Brillouin zone as confirmed through inelastic neutron scattering (INS) measurements. Density functional theory (DFT) confirmed this phonon excitation, and predicted another higher energy phonon excitation ≈12–13 meV at W point. These phonon excitations collectively increase the number of phonon decay channels leading to softening of phonon frequencies such that a three‐phonon process is dominant in Ge0.92Sb0.08Te, in contrast to a dominant four‐phonon process in pristine GeTe, highlighting the importance of phonon engineering approaches to improving thermoelectric (TE) performance.
A one-step process for the preparation of NbSe2 nanostructures under the effects of mechanical forces to be used as Pt replacement CEs in DSSCs is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.