Al–Si–Cu–Mg cast aluminum alloys have important applications in automobile lightweight due to their advantages such as high strength-to-weight ratio, good heat resistance and excellent casting performance. With the increasing demand for strength and toughness of automotive parts, the development of high strength and toughness Al–Si–Cu–Mg cast aluminum alloys is one of the effective measures to promote the application of cast aluminum alloys in the automotive industry. In this paper, the research progress of improving the strength and toughness of Al–Si–Cu–Mg cast aluminum alloys was described from the aspects of multi-component alloying and heat treatment based on the strengthening mechanism of Al–Si–Cu–Mg cast aluminum alloys. Finally, the development prospects of automotive lightweight Al–Si–Cu–Mg cast aluminum alloys is presented.
The ultra-fine-grained ferrite (UFGF) with the size of less than 1 μm is often difficult to be obtained for low-alloyed steel in practical production processing. In this study, considering the rod and wire production process, a new method for preparing the UFGF with submicron scale is proposed by warm deformation of six passes with total strain of 2.6, followed by the cooling process in Gleeble-3500 thermo-mechanical simulator. The results show that the UFGF with an average size of 0.64 μm could be obtained via the phase transformation from austenite grains with an average size of 3.4 μm, which are achieved by the deformation-induced reversal austenization during the high strain rate warm deformation. The main driving force for the reversal transformation is the stress. And the interval between the passes also plays an important role in the reversal austenization.
High quality products are demanded due to increasingly fierce market competition. In this paper, the generation of surface wrinkle defect of welding wire steel ER70S-6 was studied by the combination of the experimental method and finite element simulation. Firstly, a thermal compression test was conducted on the Gleeble-3500 thermosimulator under different strain rates and temperatures and a strain dependent Arrhenius-type constitutive function was employed to fit the flow stress–strain curves obtained from the experiments. Then, the elastoplastic constitutive relationship was implemented using radial return mapping algorithm by means of the user subroutine VUMAT of Abaqus/Explicit. A new instability criterion was proposed to predict the possibility of the surface wrinkle defect during the multipass hot bar rolling process. In order to verify the reliability of the finite element model of the six-pass continuous rolling process, the simulated results were compared with experimental data. Finally, the effects of groove width and groove radius on the billet were investigated by the orthogonal test method, and the friction coefficient and rolling temperature. The results show that the groove width and groove radius are key factors to suppress the surface wrinkle defect. Decreasing the groove width can be beneficial for improving the surface quality and reducing the fillet radius. The optimized combination of the rolling process parameters was further applied in an industrial test and the surface quality of the billet was greatly improved.
The medium carbon steel warm deformation was carried out in a Gleeble-3500 simulator, and the microstructure was observed on a scan electron microscopy (SEM) and optical microscope (OM). The results show that the dynamic reversal transformation (DRT) of austenite occurred during the multipass deformation at a temperature of 675 °C. The austenite grain size is about 3.4 μm at the stain of 2.67. The thermodynamics was discussed based on the stress activation model. The critical stress of DRT is in the range of 265.94–294.28 MPa, which is related to the Schmit factor, without considering the distortion energy. Meanwhile, the submicron ferrite was obtained after the air cooling stage. The texture of the ultrafine ferrite possessed the characteristics of good, deep drawing properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.