Human MondoA requires glucose as well as other modulatory signals to function in transcription. One such signal is acidosis, which increases MondoA activity and also drives a protective gene signature in breast cancer. How low pH controls MondoA transcriptional activity is unknown. We found that low pH medium increases mitochondrial ATP (mtATP), which is subsequently exported from the mitochondrial matrix. Mitochondria-bound hexokinase transfers a phosphate from mtATP to cytoplasmic glucose to generate glucose-6-phosphate (G6P), which is an established MondoA activator. The outer mitochondrial membrane localization of MondoA suggests that it is positioned to coordinate the adaptive transcriptional response to a cell’s most abundant energy sources, cytoplasmic glucose and mtATP. In response to acidosis, MondoA shows preferential binding to just two targets, TXNIP and its paralog ARRDC4. Because these transcriptional targets are suppressors of glucose uptake, we propose that MondoA is critical for restoring metabolic homeostasis in response to high energy charge.
c-Myc protooncogene places a demand on glucose uptake to drive glucose-dependent biosynthetic pathways. To achieve this demand, c-Myc protein (Myc henceforth) drives the expression of glucose transporters and represses the expression of Thioredoxin Interacting Protein (TXNIP), which is a potent negative regulator of glucose uptake. A Myc high/TXNIP low gene signature is clinically significant as it correlates with poor clinical prognosis in Triple-Negative Breast Cancer (TNBC) but not in other subtypes of breast cancer. To better understand how TXNIP function contributes to the aggressive behavior of TNBC, we generated TXNIP null MDA-MB-231 (231:TKO) cells for our study. We show here that TXNIP loss drives a transcriptional program that resembles those driven by Myc and increases global Myc genome occupancy. TXNIP loss allows Myc to invade the promoters and enhancers of target genes that are potentially relevant to cell transformation. Together, these findings suggest that TXNIP is a broad repressor of Myc genomic binding. The increase in Myc genomic binding in the 231:TKO cells expands the Myc-dependent transcriptome we identified in parental MDA-MB-231 cells. This expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc’s intrinsic capacity to activate transcription and without increasing Myc levels. Together, our findings suggest that TXNIP loss mimics Myc overexpression, connecting Myc genomic binding and transcriptional programs to the metabolic signals that control TXNIP expression.
The c-Myc protooncogene places a demand on glucose uptake to drive glucose-dependent biosynthetic pathways. To meet this demand, c-Myc protein (Myc henceforth) drives the expression of glucose transporters, glycolytic enzymes, and represses the expression of thioredoxin interacting protein (TXNIP), which is a potent negative regulator of glucose uptake. A Mychigh/TXNIPlow gene signature is clinically significant as it correlates with poor clinical prognosis in triple-negative breast cancer (TNBC) but not in other subtypes of breast cancer, suggesting a functional relationship between Myc and TXNIP. To better understand how TXNIP contributes to the aggressive behavior of TNBC, we generated TXNIP null MDA-MB-231 (231:TKO) cells for our study. We show that TXNIP loss drives a transcriptional program that resembles those driven by Myc and increases global Myc genome occupancy. TXNIP loss allows Myc to invade the promoters and enhancers of target genes that are potentially relevant to cell transformation. Together, these findings suggest that TXNIP is a broad repressor of Myc genomic binding. The increase in Myc genomic binding in the 231:TKO cells expands the Myc-dependent transcriptome we identified in parental MDA-MB-231 cells. This expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc’s intrinsic capacity to activate transcription and without increasing Myc levels. Together, our findings suggest that TXNIP loss mimics Myc overexpression, connecting Myc genomic binding and transcriptional programs to the nutrient and progrowth signals that control TXNIP expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.