Urologic cancers, particularly kidney, bladder, and prostate cancer, have a growing incidence and account for about a million annual deaths worldwide. Treatments, including surgery, chemotherapy, radiotherapy, hormone therapy, and immunotherapy are the main therapeutic options in urologic cancers. Immunotherapy is now a clinical reality with marked success in solid tumors. Immunological checkpoint blockade, non-specific activation of the immune system, adoptive cell therapy, and tumor vaccine are the main modalities of immunotherapy. Immunotherapy has long been used to treat urologic cancers; however, dose-limiting toxicities and low response rates remain major challenges in the clinic. Herein, nanomaterial-based platforms are utilized as the “savior”. The combination of nanotechnology with immunotherapy can achieve precision medicine, enhance efficacy, and reduce toxicities. In this review, we highlight the principles of cancer immunotherapy in urology. Meanwhile, we summarize the nano-immune technology and platforms currently used for urologic cancer treatment. The ultimate goal is to help in the rational design of strategies for nanomedicine-based immunotherapy in urologic cancer.
Ferroptosis is a non-apoptotic regulatory form of cell death that has sparked significant interest and research in cancer treatment and certain small chemical inducers have been used in the clinic. These inducers’s weak water solubility, poor targeting, rapid metabolism; and other undesirable characteristics; however, for therapeutic approaches that combine immunotherapy and ferroptosis, challenges such as medication delivery, the complexity of the tumor microenvironment, and immunosuppression remain. The targeted, low toxicity, and efficient distribution benefits of nanotechnology have considerably enhanced the therapeutic efficacy of combining immunotherapy with ferroptosis. This paper describes the distinct mechanism of ferroptosis in tumor therapy and immunotherapy, as well as the application and benefits of nanotechnology in the combination of tumor immunotherapy and ferroptosis.Systematic review registrationhttp://clinicaltrials.gov/, NCT00941070.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.