The photo-induced insulator-metal transition for silicon-based VO2 nanofilm is studied by THz time-domain spectroscopy (THz-TDS). Obvious variations of THz ray transmittance are observed before and after the CW laser beam exciting, and the conductivity of metallic-phased VO2 film in the THz region is calculated in the thin film approximation. According to the measured results, the metallic-phased VO2 film is characterized equivalently with Drude’s model, and complex conductivity, dielectric function and refractive index are acquired by the model. As an examination on the equivalent Drude model, numerical simulation based on the finite integral method in time domain is carried out. The results show that they are in good agreement with the experimental results. This work provides a reference for the study on phase transition of VO2 nanofilm and its application in the THz region.
Butanol has been considered an attractive alternative fuel for automotive engine. In the present study, a numerical study is conducted in a spark-ignition engine fuelled with blends of gasoline and 1-butanol at different fuel/air equivalence ratios. The effect of fuel/air equivalence ratio on engine performance is analyzed. The results show that the peak pressure and peak temperature increases with the increasing of fuel/air equivalence ratio. With increased 1-butanol proportion, the incylinder pressure and incylinder temperature gradually decreases. In addition, effect of fuel/air equivalence ratio on nitrogen monoxide emission is depended on the proportion of 1-butanol in blended fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.