The past few decades have witnessed the great progress of unmanned aircraft vehicles (UAVs) in civilian fields, especially in photogrammetry and remote sensing. In contrast with the platforms of manned aircraft and satellite, the UAV platform holds many promising characteristics: flexibility, efficiency, highspatial/temporal resolution, low cost, easy operation, etc., which make it an effective complement to other remote-sensing platforms and a cost-effective means for remote sensing. Considering the popularity and expansion of UAV-based remote sensing in recent years, this paper provides a systematic survey on the recent advances and future prospectives of UAVs in the remote-sensing community. Specifically, the main challenges and key technologies of remote-sensing data processing based on UAVs are discussed and summarized firstly. Then, we provide an overview of the widespread applications of UAVs in remote sensing. Finally, some prospects for future work are discussed. We hope this paper will provide remotesensing researchers an overall picture of recent UAV-based remote sensing developments and help guide the further research on this topic.
Recent camouflaged object detection (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios. Apart from the high intrinsic similarity between camouflaged objects and their background, objects are usually diverse in scale, fuzzy in appearance, and even severely occluded. To this end, we propose an effective unified collaborative pyramid network which mimics human behavior when observing vague images and videos, i.e., zooming in and out. Specifically, our approach employs the zooming strategy to learn discriminative mixed-scale semantics by the multi-head scale integration and rich granularity perception units, which are designed to fully explore imperceptible clues between candidate objects and background surroundings. The former's intrinsic multi-head aggregation provides more diverse visual patterns. The latter's routing mechanism can effectively propagate inter-frame difference in spatiotemporal scenarios and adaptively ignore static representations. They provides a solid foundation for realizing a unified architecture for static and dynamic COD. Moreover, considering the uncertainty and ambiguity derived from indistinguishable textures, we construct a simple yet effective regularization, uncertainty awareness loss, to encourage predictions with higher confidence in candidate regions. Our highly task-friendly framework consistently outperforms existing state-of-the-art methods in image and video COD benchmarks. The code will be available at https://github.com/lartpang/ZoomNeXt.
Low-textured image stitching remains a challenging problem. It is difficult to achieve good alignment and it is easy to break image structures due to insufficient and unreliable point correspondences. Moreover, because of the viewpoint variations between multiple images, the stitched images suffer from projective distortions. To solve these problems, this paper presents a line-guided local warping method with a global similarity constraint for image stitching. Line features which serve well for geometric descriptions and scene constraints, are employed to guide image stitching accurately. On one hand, the line features are integrated into a local warping model through a designed weight function. On the other hand, line features are adopted to impose strong geometric constraints, including line correspondence and line colinearity, to improve the stitching performance through mesh optimization. To mitigate projective distortions, we adopt a global similarity constraint, which is integrated with the projective warps via a designed weight strategy. This constraint causes the final warp to slowly change from a projective to a similarity transformation across the image. Finally, the images undergo a two-stage alignment scheme that provides accurate alignment and reduces projective distortion. We evaluate our method on a series of images and compare it with several other methods. The experimental results demonstrate that the proposed method provides a convincing stitching performance and that it outperforms other state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.