The COVID-19 disease, which is caused by the novel coronavirus, SARS-CoV-2, has affected the world by increasing the mortality rate in 2020. Currently, there is no definite treatment for COVID-19 patients. Several clinical trials have been proposed to overcome this disease and many are still under investigation. In this review, we will be focusing on the potency of mesenchymal stem cells (MSCs) and MSC-derived secretome for treating COVID-19 patients. Fever, cough, headache, dizziness, and fatigue are the common clinical manifestations in COVID-19 patients. In mild and severe cases, cytokines are released hyper-actively which causes a cytokine storm leading to acute respiratory distress syndrome (ARDS). In order to maintain the lung microenvironment in COVID-19 patients, MSCs are used as cell-based therapy approaches as they can act as cell managers which accelerate the immune system to prevent the cytokine storm and promote endogenous repair. Besides, MSCs have shown minimal expression of ACE2 or TMPRSS2, and hence, MSCs are free from SARS-CoV-2 infection. Numerous clinical studies have started worldwide and demonstrated that MSCs have great potential for ARDS treatment in COVID-19 patients. Preliminary data have shown that MSCs and MSC-derived secretome appear to be promising in the treatment of COVID-19. Lay Summary The COVID-19 disease is an infection disease which affects the world in 2020. Currently, there is no definite treatment for COVID-19 patients. However, several clinical trials have been proposed to overcome this disease and one of them is using mesenchymal stem cells (MSCs) and MSC-derived secretome for treating COVID-19 patients. During the infection, cytokines are released hyper-actively which causes a cytokine storm. MSCs play an important role in maintaining the lung microenvironment in COVID-19 patients. They can act as cell managers which accelerate the immune system to prevent the cytokine storm and promote the endogenous repair. Therefore, it is important to explore the clinical trial in the world for treating the COVID-19 disease using MSCs and MSC-derived secretome.
Lung cancer is the second most common type of cancer after breast cancer. It ranks first in terms of mortality rate among all types of cancer. Lung cancer therapies are still being developed, one of which makes use of nanoparticle technology. However, conjugation with specific ligands capable of delivering drugs more precisely to cancer sites is still required to enhance nanoparticle targeting performance. Monoclonal antibodies are one type of mediator that can actively target nanoparticles. Due to the large number of antigens on the surface of cancer cells, monoclonal antibodies are widely used to deliver nanoparticles and improve drug targeting to cancer cells. Unfortunately, these antibodies have some drawbacks, such as rapid elimination, which results in a short half-life and ineffective dose. As a result, many of them are formulated in nanoparticles to minimize their major drawbacks and enhance drug targeting. This review summarizes and discusses articles on developing and applying various types of monoclonal antibody ligand nanoparticles as lung cancer target drugs. This review will serve as a guide for the choice of nanoparticle systems containing monoclonal antibody ligands for drug delivery in lung cancer therapy.
Recurrent aphthous stomatitis (RAS) is a prevalent clinical disorder that causes mouth ulcers. Furthermore, corticosteroid treatment has been widely utilized for RAS therapy; however, it has side effects on the oral mucosa that limit its application. This study aimed to develop a novel RAS therapy with the natural ingredient α-mangostin, delivered by alginate and chitosan polymers-based hydrogel film (α-M Alg/Chi-HF). To prepare α-M Alg/Chi-HF, the solvent evaporation and casting methods were used, then characterized by using SEM, FTIR, and XRD. Based on the characterization studies, the α-M in α-M/EtOH Alg/Chi-HF with ethanol (EtOH) was found to be more homogenous compared to α-M in Alg/Chi-HF with distilled water (H2O) as a casting solvent. The in vitro viability study using NIH3T3 cells showed 100% viability of α-M Alg/Chi-HF (EtOH) and Alg/Chi-HF after 24 h incubation, indicating well tolerability of these hydrogel films. Interestingly, the in vivo studies using male white rats (Rattus norvegicus Berkenhout) proved that α-M/EtOH Alg/Chi-HF with a recovery of 81.47 ± 0.09% in seven days significantly more effective RAS therapy compared to control. These results suggest that α-M/EtOH Alg/Chi-HF has the potential as an alternative for RAS therapy.
Fermented foods and drinks derived from animals as well as plants play an important role in diets. These foods usually contain lactic acid bacteria (LAB) grown during fermentation, and these naturally contain compounds, including organic acids, ethanol, or antimicrobial compounds with the ability to inhibit spoilage organisms and pathogenic bacteria in fermented foods. Furthermore, these bacteria are able to adapt well to the spontaneous fermentation process and play a role in human as well as animal health, especially in digestive tract, commonly known as probiotics. This study therefore aims to describe the microorganisms produced by fermented foods suitable for development as probiotics to improve human health, as these generally have the ability to improve the immune system against pathogenic bacteria. Several genera are used as probiotics, including Lactobacillus , Bifidobacterium , Bacillus , Pediococcus , and several yeasts. Therefore, LAB produced from fermented foods were concluded to be suitable potential candidates for probiotics, to replace antibiotics in overcoming pathogenic bacteria, and to possess the ability to improve the immune system and strengthen the body against pathogenic bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.