Due to the increasing demand for fish consumption, sustainable fishery become more and more challenging. To prevent from overfishing, massive data in open sea fishing have been collected and analyzed to achieve efficient management of fishery. Still, it is extremely difficult for fishers and fishery managers to exploit available data for accurate prediction, because of their limited data processing capacities, and the overall lack of adequate database systems [1].The goal of this work is therefore to analyze the relationship between data collected from all sensors installed on-board fishing vessels and catch weight, to better support generating a map showing likely fishing effort allocation. To do so, we train neural networks to predict catch weight using all available data from sensors on fishing vessels. The raw data are pre-processed using random sampling techniques to be fed into a neural network for training. A multi-layer perceptron (MLP) neural network is proposed as the baseline. We propose a data augmentation method and a training strategy in order to optimize the prediction accuracy of the model. Our data augmentation method conducts random sampling of the original data multiple times, which reduces the root mean square error (RMSE) by 15.8%, as compared with the results obtained by the model trained without data augmentation. Our training strategy works well to further optimize the prediction accuracy of the model trained with an augmented dataset, which significantly decreased the RMSE by 11.2%. To the best of our knowledge, this is the first study on the catch weight prediction using neural networks.
Based on Liu Haisu's important art practice track, this article analyzes the major measures in Chinese art education, and expounds on the new teaching methods implemented in Chinese art education in the early 20th century, with a view to showing Liu Haisu's art education ideas and art The view can be used as a reference for the art education that is flourishing today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.