Bamboo scrimber is a new type of bamboo-based panel that is prone to be affected by biological and service environments under outdoor conditions. In this paper, the physical and mechanical performance and the microchemical and surface properties of untreated and hot-oil-treated bamboo scrimber were analyzed to illustrate the processing mechanism of scrimber. Methyl silicone oil treatment was carried out at 120, 140, and 160 °C for 2, 4, and 6 h. The density, mechanical properties, air-dried moisture content, surface morphology, chemical structure, swelling properties, color, and contact angle of the bamboo scrimber were analyzed to evaluate the treatment effectiveness. Observation of the environmental-scanning electron microscope indicated that the glue layer of the bamboo scrimber was not significantly damaged after hot oil treatment. At low temperatures, the mechanical properties did not change significantly. Infrared-spectrum analysis showed a significant decrease in mechanical properties at higher temperatures and longer treatment time for the degradation of hemicellulose. The contact angle test and swelling properties test showed that the hot oil treatment improved the dimensional stability and reduced the wettability on the surface of the bamboo scrimber. The above analysis results show that the treatment at 140 °C for 2 h is most effective.
Coffee is one of the most popular beverages in the world. It generates a waste known as coffee grounds. In this work, changes in mechanical properties, crystallinity index, and DSC characteristics of PLA/coffee grounds with different dosages were analyzed by XRD, DSC, and mechanical property tests. Statistical analysis showed that the modulus of rupture of PLA/coffee grounds 3D printing materials was maximal at 109.07 MPa and 3604 MPa when 3% coffee grounds were added. The tensile strength of the untreated PLA complex was 49.99 MPa, and the tensile strength increased from 49.99 MPa to 51.28 MPa after 3% coffee grounds were added. However, there was no significant difference between the PLA complex and PLA/coffee grounds 3D printing materials when the additions were lower than 3%. The statistical analysis showed that when the coffee grounds additions increased from 5% to 7%, the tensile strength of PLA/coffee grounds 3D printing products significantly decreased. For example, the tensile strength decreased from 49.99 MPa to 26.45 MPa with addition of 7% coffee grounds. The difference between the glass transition, cold crystallization, and melting temperatures of PLA coffee grounds 3D printing materials was almost negligible, which indicates that the thermal properties of PLA coffee grounds 3D printing materials are comparable to those of PLA, and that the processing temperature and FDM printing temperature of the PLA filament are suitable for application to the PLA coffee grounds 3D printing material system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.