Background: Autophagy, a process of self-digestion, is closely related to multiple biological processes of colon cancer. This study aimed to construct and evaluate prognostic signature of autophagy-related genes (ARGs) to predict overall survival (OS) in colon cancer patients. Materials and Methods: First, a total of 234 ARGs were downloaded via The Cancer Genome Atlas (TCGA) database. Based on the TCGA dataset, differentially expressed ARGs were identified in colon cancer. The univariate and multivariate Cox regression analysis was performed to screen prognostic ARGs to construct the prognostic model. The feasibility of the prognostic model was evaluated using receiver operating characteristic curves and Kaplan-Meier curves. A prognostic model integrating the gene signature with clinical parameters was established with a nomogram. Results: We developed an autophagy risk signature based on the 6 ARGs ( ULK3, ATG101, MAP1LC3C, TSC1, DAPK1, and SERPINA1 ). The risk score was positively correlated with poor outcome and could independently predict prognosis. Furthermore, the autophagy-related signature could effectively reflect the levels of immune cell type fractions and indicate an immunosuppressive microenvironment. Conclusion: We innovatively identified and validated 6 autophagy-related gene signature that can independently predict prognosis and reflect overall immune response intensity in the colon cancer microenvironment.
No abstract
Stress coping styles are very common in fish, and investigations into this area can greatly improve fish welfare and promote the sustainable development of aquaculture. Although most studies have focused on the behavioral and physiological differences of these fishes, the endocrine response of different coping styles fish when undergoing salinity challenge is still unclear. We examined the physiological response in olive flounder with active coping (AC) style and passive coping (PC) style after transferred from seawater (SW) to freshwater for 0, 2, 5, 8, and 14 days. The results showed that: 1) the plasma prolactin level of FW-acclimated AC flounder was substantially higher than that of FW-acclimated PC flounder at 5, 8, and 14 days, and the branchial gene expression of prolactin receptor (PRLR) in AC flounder was slightly higher than PC flounder after transfer. While there was no remarkable difference observed in cortisol (COR) levels between AC and PC flounder. After transfer, glucocorticoid receptor (GR) expression in AC flounder was significantly higher compared with PC flounder at 8 days. 2) Branchial NKA-IR ionocytes numbers were reduced in PC flounder after transfer, while ionocytes number remain stable in AC flounder. 3) The branchial stem cell transcription factor foxi1 gene expression of AC flounder was significantly higher than PC flounder at 2, 5, and 14 days after transfer, while branchial stem cell transcription factor p63 gene expression of FW-acclimated AC flounder was only substantially higher than that of PC flounder at 5 days. 4) As an apoptosis upstream initiator, the branchial gene expression of caspase-9 in PC flounder was considerably higher than in AC flounder after transfer at 8 days. This study revealed that olive flounder with active and passive coping styles have different endocrine coping strategies after facing the low-salinity challenge. AC flounder adopt an active endocrine strategy by increasing ionocyte differentiation and prolactin secretion significantly. In contrast, PC flounder employ a passive strategy of reducing ionocytes differentiation and retaining prolactin content at a low level to reduce branchial ionocytes number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.