Summary In order to explore the discharge characteristics of aluminum‐air battery and find out the best discharge performance of aluminum‐air battery under the optimum working conditions, this paper studies discharge performances of an aluminum‐air battery under various ambient temperature and battery discharge conditions. The relationship between the temperature rise of the battery electrolyte and the discharge current density was studied by an experimental method. Effects of the electrolyte concentration and the ambient temperature on the battery discharge voltage were investigated. In addition, a novel method for calculating the efficiency of the aluminum‐air battery was proposed. Results show that the temperature of the aluminum‐air battery electrolyte gradually increases as its discharge current density increases and the electrolyte temperature rise could reach as high as 10°C after 60 minutes with a constant 35 mA cm−2 discharge current density. The specific energy and the specific capacity of the aluminum‐air battery first increase and then decrease as the current density increases. When the current density is 25 mA cm−2, the specific energy has a peak of 3105 Wh kg−1 for the condition of the chamber temperature 40°C and the electrolyte concentration 2 mol L−1 (2 M), while the specific capacity has a peak of 2207 Ah kg−1; furthermore, its efficiencies under various conditions increase first with the current density, reach a peak range of 19.6% to approximately 36% at 25 mA cm−2, and then decrease. These experimental results could be used as a technical guidance for the optimization in thermal management designs of the aluminum‐air battery under various operating conditions.
Summary Due to lack of systematic research on open‐circuit voltage (OCV) and electrolyte temperature rise characteristics of aluminum air battery, in order to explore the influential factors on the OCV and electrolyte temperature rise of aluminum air battery, in this paper, for the first time, we studied the effects of different ambient temperature conditions, different concentrations of NaOH and KOH electrolyte, and pure aluminum and aluminum alloy on the OCV and electrolyte temperature rise of aluminum air battery. Results show that the OCV of aluminum air battery is obviously affected by ambient temperature conditions, electrolyte concentration, and different anode materials. The OCV range is 1.5 to 1.8 V at 0°C under different KOH‐electrolyte concentrations when aluminum alloy is used as anode material; with the increase of ambient temperature, the OCV will rise, and the range is 1.8 to 1.95 V. The working process of aluminum air battery is accompanied by the phenomenon of heat release, and the temperature rise range of electrolyte will not exceed 7°C when aluminum alloy is used as the anode material; however, the highest temperature of the electrolyte can reach 100°C when pure aluminum is used as the negative electrode material. The results of this study will provide theoretical guidance for designing aluminum air batteries and identifying their optimal operating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.