BackgroundHypertension is a leading global disease, and myocardial fibrosis is an important adverse effect of hypertension, seriously threatening human health. The IL-6/STAT3 pathway and endothelin-1 (ET-1) were previously suggested to play a part in myocardial fibrosis.Material/MethodsTo investigate the role of Atorvastatin (Ato) in spontaneous hypertension, systolic blood pressure (SBP) and left ventricular mass index (LVMI) were measured, and Masson trichrome staining was performed. Furthermore, the relative protein levels of the IL-6/STAT3/ET-1 pathway were tested.ResultsAto prevented myocardial fibrosis in spontaneous hypertension rats, especially at the dosage of 50 mg/kg/d. The IL-6/STAT3 pathway was observed to be suppressed by Ato, and ET-1 level in myocardial tissues was also downregulated by Ato. The phosphorylation status of STAT3 was tested after Ato treatment, showing that Ato mainly stimulated the tyr-705 phosphorylation of STAT3.ConclusionsResults of this study may help promote myocardial fibrosis therapy and provide insights into the IL-6/STAT3/ET-1-mediated mechanism in Ato-induced myocardial fibrosis inhibition.
The transforming growth factor (TGF)-β-inducible early gene-1 (TIEG1) plays a crucial role in modulating cell apoptosis and proliferation in a number of diseases, including pancreatic cancer, leukaemia and osteoporosis. However, the functional role of TIEG1 in the heart has not been fully defined. In this study, we first investigated the role of TIEG1 in ischaemic heart disease. For in vitro experiments, cardiomyocytes were isolated from both TIEG1 knockout (KO) and wile-type (WT) mice, and the apoptotic ratios were evaluated after a 48-h ischaemic insult. A cell proliferation assay was performed after 7 days of incubation under normoxic conditions. In addition, the angiogenic capacity of endothelial cells was determined by tube formation assay. For in vivo experiments, a model of myocardial infarction (MI) was established using both TIEG1 KO and WT mice. Echocardiography was performed at 3 and 28 days post-MI, whereas the haemodynamics test was performed 28 days post-MI. Histological analyses of apoptosis, proliferation, angiogenesis and infarct zone assessments were performed using terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) staining, BrdU immunostaining, α-smooth muscle actin (α-SMA)/CD31 immunostaining and Masson's trichrome staining, respectively. Changes in the expression of related proteins caused by TIEG1 deficiency were confirmed using both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Our results demonstrated that the absence of TIEG1 prevented cardiomyocytes from undergoing apoptosis and promoted higher proliferation; it stimulated the proliferation of endothelial cells in vitro and in vivo. Improved cardiac function and less scar formation were observed in TIEG1 KO mice, and we also observed the altered expression of phosphatase and tensin homolog (Pten), Akt and Bcl-2/Bax, as well as vascular endothelial growth factor (VEGF). On the whole, our findings indicate that the absence of TIEG1 plays a cardioprotective role in ischaemic heart disease by promoting changes in Pten/Akt signalling.
Background: Recent studies have identified amphoterin-induced gene and open
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.