Interest in utilizing biorenewable feedstocks to produce fuels and chemicals has risen greatly in the past decade due to the economic, political and environmental concerns associated with diminishing petroleum reserves. A fundamental challenge lying ahead in the development of efficient processes to utilize biomass feedstock is that, unlike their petroleum counterparts, biomass contains an excess amount of oxygen. Therefore, catalytic strategies such as dehydration and hydrogenolysis amongst others have been extensively studied as platform technologies for deoxygenation. In this review, we primarily discuss the catalytic dehydration of C 6 carbohydrates to 5-hydroxymethylfurfural, which has attracted much attention due to the versatility of using furanic compounds as an important platform intermediate to synthesize various chemicals. The emphasis is on the fundamental mechanistic chemistry so as to provide insights for further catalyst/catalytic system design. After separately discussing fructose and glucose dehydration, this review summarizes recent progress with bi-functional catalyst systems for tandem glucose/fructose isomerization and subsequent fructose dehydration, thereby realizing highly selective HMF production directly from the more abundant and cheaper C 6 sugar feedstock, glucose.
We report the catalytic conversion of glucose in high yields (62%) to 5-hydroxymethylfurfural (HMF), a versatile platform chemical. The reaction system consists of a Lewis acid metal chloride (e.g., AlCl 3) and a Bronsted acid (HCl) in a biphasic reactor consisting of water and an alkylphenol compound (2-secbutylphenol) as the organic phase. The conversion of glucose in the presence of Lewis and Bronsted acidity proceeds through a tandem pathway involving isomerization of glucose to fructose, followed by dehydration of fructose to HMF. The organic phase extracts 97% of the HMF produced, while both acid catalysts remain in the aqueous phase.
Glucose is a key energy supplier and nutrient for tumor growth. Herein, inspired by the glucose oxidase (GOx)-assisted conversion of glucose into gluconic acid and toxic H O , a novel treatment paradigm of starving-like therapy is developed for significant tumor-killing effects, more effective than conventional starving therapy by only cutting off the energy supply. Furthermore, the generated acidic H O can oxidize l-Arginine (l-Arg) into NO for enhanced gas therapy. By using hollow mesoporous organosilica nanoparticle (HMON) as a biocompatible/biodegradable nanocarrier for the co-delivery of GOx and l-Arg, a novel glucose-responsive nanomedicine (l-Arg-HMON-GOx) has been for the first time constructed for synergistic cancer starving-like/gas therapy without the need of external excitation, which yields a remarkable H O -NO cooperative anticancer effect with minimal adverse effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.