Recently, enhancing conventional tuned mass dampers (TMDs) with a pounding damping mechanism is demonstrated to be an efficient way for vibration control of flexible structures. In this paper, a double-tuned pendulum mass damper employing a pounding damping mechanism (DTPMD-PD) is proposed. DTPMD-PD dissipates energy through the collision between distributed balls with a smaller mass and viscoelastic (VE) boundary, which can effectively reduce noise during operation compared to conventional impact dampers. Moreover, DTPMD-PD utilizes a double-tuning mechanism, and its control performance is significantly enhanced. The motion equations of a multiple degree of freedom (MDOF) structure equipped with DTPMD-PD are formulated. Based on the H∞ optimization criterion, a numerical optimization is performed to obtain the optimal design parameters of DTPMD-PD. Additionally, the pounding dissipation capacity and the parametric identification of the impact force model are investigated through free pounding experiments, and the control performance and robustness of DTPMD-PD are experimentally studied in the laboratory. The results show that the proposed numerical modeling method has considerable accuracy through experimental verifications. The restitution coefficient of the pounding layer has a significant influence on the performance of proposed DTPMD-PD. Optimized DTPMD-PD has better effectiveness than conventional TMDs under harmonic and seismic loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.