Catalytic conversion reactions of acetylene on a solid SiC grain surface lead to the formation of polycyclic aromatic hydrocarbons (PAHs) and are expected to mimic chemical processes in certain astrophysical environments. Gas-phase PAHs and intermediates were detected in situ using time-of-flight mass spectrometry, and their formation was confirmed using GC-MS in a separate experiment by flowing acetylene gas through a fixed-bed reactor. Activation of acetylene correlated closely with the dangling bonds on the SiC surface which interact with and break the C-C π bond. The addition of acetylene to the resulting radical site forms a surface ring structure which desorbs from the surface. The results of HRTEM and TG indicate that soot and graphene formation on the SiC surface depends strongly on reaction temperature. We propose that PAHs as seen through the 'UIR' emission bands can be formed through decomposition of a graphene-like material, formed on the surface of SiC grains in carbon-rich circumstellar envelopes.
2D MXenes have been found to be one of the most promising catalysts for hydrogen evolution reaction (HER) due to their excellent electronic conductivity, hydrophilic nature, porosity and stability. Nonmetallic (NM) element doping is an effective approach to enhance the HER catalytic performance. By using the density functional theory (DFT) method, we researched the effect of nonmetallic doping (different element types, variable doping concentrations) and optimal hydrogen absorption concentration on the surface of NM-Ti3C2O2 for HER catalytic activity and stability. The calculation results show that doping nonmetallic elements can improve their HER catalytic properties; the P element dopants catalyst especially exhibits remarkable HER performance (∆GH = 0.008 eV when the P element doping concentration is 100% and the hydrogen absorption is 75%). The origin mechanism of the regulation of doping on stability and catalytic activity was analyzed by electronic structures. The results of this work proved that by controlling the doping elements and their concentrations we can tune the catalytic activity, which will accelerate the further research of HER catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.