Since a rapidly increasing number of neurostimulation devices are used clinically to modulate specific neural functions, the impact of electrical stimulation on targeted neural structure and function has become a key issue. In particular, the specific effect of electrical stimulation via a cochlear implant (CI) on inner hair cell (IHC) synapses remains unclear. Importantly, CI candidacy has recently expanded to include patients with partial hearing loss. Unfortunately, some CI recipients experience progressive hearing loss after activation of electrical stimulation. The mechanism(s) accounting for loss of residual hearing following electrical stimulation is unknown. Here normalhearing guinea pigs were implanted with customized CIs. Intracochlear electrical stimulation with an intensity equal to or above electrically evoked compound action potential (ECAP) threshold decreased the excitability of auditory nerve. Furthermore, the number of synapses between IHCs and the afferent spiral ganglion neurons (SGNs) also decreased after electrical stimulation with higher intensities. However, no significant change was observed in the packing density and perikaryal area of SGNs as well as the quantity of hair cells. These results carry important implications for use of CIs in patients with residual hearing and for an increasing number of patients treated with other neurostimulation devices. Notably, the results were based on acute electrical stimulation. Considering the complex interaction between CIs and targeted tissues, it is urgent to conduct further research to clarify whether the similar changes could be induced by chronic electrical stimulation.
We report here a regiospecific [3 + 2] annulation between aminocyclopropanes
and various functionalized alkynes enabled by a P/N-heteroleptic Cu(I) photosensitizer under photoredox
catalysis conditions. Thus, a divergent construction of 3-aminocyclopentene
derivatives including methylsulfonyl-, arylsulfonyl-, chloro-, ester-,
and trifluoromethyl-functionalized aminocyclopentenes could be achieved
with advantages of high regioselectivity, broad substrate compatibility,
and mild and environmentally benign reaction conditions.
Depletion of kinectin1 (KTN1) provides a potential strategy for inhibiting tumorigenesis of cutaneous squamous cell carcinoma (cSCC) via reduction of epidermal growth factor receptor (EGFR) protein levels. Yet, the underlying mechanisms of KTN1 remain obscure. In this study, we demonstrate that KTN1 knockdown induces EGFR degradation in cSCC cells by promoting the ubiquitin-proteasome system, and that this effect is tumor cell-specific. KTN1 knockdown increases the expression of CCDC40, PSMA1, and ADRM1 to mediate tumor suppressor functions in vivo and in vitro. Mechanistically, c-Myc directly binds to the promoter region of CCDC40 to trigger the CCDC40-ADRM1-UCH37 axis and promote EGFR deubiquitination. Furthermore, KTN1 depletion accelerates EGFR degradation by strengthening the competitive interaction between PSMA1 and ADRM1 to inhibit KTN1/ADRM1 interaction at residues Met1-Ala252. These results are supported by studies in mouse xenografts and human patient samples. Collectively, our findings provide novel mechanistic insight into KTN1 regulation of EGFR degradation in cSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.