Environmental sound classification (ESC) is a challenging problem due to the complexity of sounds. The classification performance is heavily dependent on the effectiveness of representative features extracted from the environmental sounds. However, ESC often suffers from the semantically irrelevant frames and silent frames. In order to deal with this, we employ a frame-level attention model to focus on the semantically relevant frames and salient frames. Specifically, we first propose a convolutional recurrent neural network to learn spectro-temporal features and temporal correlations. Then, we extend our convolutional RNN model with a frame-level attention mechanism to learn discriminative feature representations for ESC. We investigated the classification performance when using different attention scaling function and applying different layers. Experiments were conducted on ESC-50 and ESC-10 datasets. Experimental results demonstrated the effectiveness of the proposed method and our method achieved the state-of-the-art or competitive classification accuracy with lower computational complexity. We also visualized our attention results and observed that the proposed attention mechanism was able to lead the network tofocus on the semantically relevant parts of environmental sounds.
Environmental sound classification (ESC) is a challenging problem due to the complexity of sounds. The ESC performance is heavily dependent on the effectiveness of representative features extracted from the environmental sounds. However, ESC often suffers from the semantically irrelevant frames and silent frames. In order to deal with this, we employ a frame-level attention model to focus on the semantically relevant frames and salient frames. Specifically, we first propose an convolutional recurrent neural network to learn spectro-temporal features and temporal correlations. Then, we extend our convolutional RNN model with a frame-level attention mechanism to learn discriminative feature representations for ESC. Experiments were conducted on ESC-50 and ESC-10 datasets. Experimental results demonstrated the effectiveness of the proposed method and achieved the state-of-the-art performance in terms of classification accuracy.
In the important and challenging field of environmental sound classification (ESC), a crucial and even decisive factor is the feature representation ability, which can directly affect the accuracy of classification. Therefore, the classification performance often depends to a large extent on whether the effective representative features can be extracted from the environmental sound. In this paper, we firstly propose a sub-spectrogram segmentation with score level fusion based ESC classification framework, and we adopt the proposed convolutional recurrent neural network (CRNN) for improving the classification accuracy. By evaluating numerous truncation schemes, we numerically figure out the optimal number of sub-spectrograms and the corresponding band ranges, and, on this basis, we propose a joint attention mechanism with temporal and frequency attention mechanisms and use the global attention mechanism when generating the attention map. Finally, the numerical results show that the two frameworks we proposed can achieve 82.1% and 86.4% classification accuracy on the public environmental sound dataset ESC-50, respectively, which is equivalent to more than 13.5% improvement over the traditional baseline scheme.
Environmental Sound Classification (ESC) is an important and challenging problem, and feature representation is a critical and even decisive factor in ESC. Feature representation ability directly affects the accuracy of sound classification. Therefore, the ESC performance is heavily dependent on the effectiveness of representative features extracted from the environmental sounds. In this paper, we propose a subspectrogram segmentation based ESC classification framework. In addition, we adopt the proposed Convolutional Recurrent Neural Network (CRNN) and score level fusion to jointly improve the classification accuracy. Extensive truncation schemes are evaluated to find the optimal number and the corresponding band ranges of sub-spectrograms. Based on the numerical experiments, the proposed framework can achieve 81.9% ESC classification accuracy on the public dataset ESC-50, which provides 9.1% accuracy improvement over traditional baseline schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.