Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can cause severe diseases, especially in immunocompromised adults and newborns, such as keratitis and herpes simplex encephalitis. At present, the clinical therapeutic drug against HSV-1 infection is acyclovir (ACV), and its extensive usage has led to the emergence of ACV-resistant strains. Therefore, it is urgent to explore novel therapeutic targets and anti-HSV-1 drugs. This study demonstrated that Oleanolic acid, a pentacyclic triterpenoid widely existing in natural product, had strong antiviral activity against both ACV-sensitive and -resistant HSV-1 strains in different cells. Mechanism studies showed that Oleanolic acid exerted its anti-HSV-1 activity in the immediate early stage of infection, which involved the dysregulation of viral UL8, a component of viral helicase-primase complex critical for viral replication. In addition, Oleanolic acid significantly ameliorated the skin lesions in an HSV-1 infection mediated zosteriform model. Together, our study suggested that Oleanolic acid could be a potential candidate for clinical therapy of HSV-1 infection-related diseases.
We have identified a strain of polyomavirus, Py(L), which is unusual in causing acute morbidity and early death after inoculation of newborn mice. We determined that these animals died of kidney failure associated with extensive, virus-mediated destruction of renal tissue. Interestingly, the Py(L) strain infects baby mouse kidney cell cultures more efficiently than do other strains.
Herpes simplex virus type 1 (HSV-1) is a highly prevalent virus in humans and causes severe forms of inflammation, such as herpes simplex encephalitis (HSE). Pyroptosis is a new inflammatory cell death triggered by inflammasome and cysteine-requiring aspartate protease-1 (caspase-1) activation. Nonetheless, HSV-1 induces encephalitis, and cell death mechanisms are not understood. In this study, we confirmed for the first time that the DNA virus HSV-1 triggers Gasdermin D-dependent pyroptosis by activating NLR family pyrin domain containing 3 (NLRP3) inflammasomes in mouse microglia, leading to mature IL-1β production and active caspase-1 (p10) release. Inhibition of microglial NLRP3 inflammasome activation suppressed HSV-1-induced Gasdermin D-dependent pyroptosis. In addition, NLRP3 and IL-1β expression levels were significantly increased in the mouse model of herpes simplex encephalitis compared with normal mice without viral infection. Collectively, our data revealed that the activation of inflammasomes and GSDMD-dependent pyroptosis is the mechanism of HSV-1 inducing inflammation and provides treatment targets for viral inflammation.
As a novel heat shock protein 90 inhibitor, AT-533 exhibits various biological activities in vitro, including anti-viral, anti-tumor and anti-inflammatory activities. Moreover, AT-533 gel, a gel dosage form of AT-533, has been suggested to have anti-keratitis and herpes simplex virus type-1 infection-induced effects on the skin lesions of animals. However, the safety evaluation of AT-533 and AT-533 gel has, to the best of our knowledge, not been examined in in vivo toxicological tests. Therefore, these toxicological tests were carried out in the present study. A 30-day subacute toxicity test for AT-533 was conducted at doses of 1, 2 and 4 mg/kg in Sprague-Dawley rats, while that for AT-533 gel was conducted using a single dose of 5 g/kg. The toxicological tests showed that a high-dose of AT-533 caused lethality and side effects in Sprague-Dawley rats. However, no mortality, loss of appetite and body weight, adverse reactions, or toxicologically relevant alterations in hematology, biochemistry and macroscopic findings (except for skin) occurred in rats exposed to low-dose AT-533 and single-dose AT-533 gel (5 g/kg) during a 30-day subacute dermic toxicity study. The aforementioned results suggested that AT-533 gel is non-toxic for Sprague-Dawley rats, as shown by a dermic subacute toxicity test and that except for slight skin irritation, AT-533 gel had almost no side effects when administered percutaneously for 30 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.