In this paper, we will build a roadmap for the growing literature of high order quadrature-based entropy stable discontinuous Galerkin (DG) methods, trying to elucidate the motivations and emphasize the contributions. Compared to the classic DG method which is only provably stable for the square entropy, these DG methods can be tailored to satisfy an arbitrary given entropy inequality, and do not require exact integration. The methodology is within the summation-by-parts (SBP) paradigm, such that the discrete operators collocated at the quadrature points should satisfy the SBP property. The construction is relatively easy for quadrature rules with collocated surface nodes. We use the flux differencing technique to ensure entropy balance within elements, and the simultaneous approximation terms (SATs) to produce entropy dissipation on element interfaces. The further extension to general quadrature rules is achieved through careful modifications of SATs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.