The plethora of complex Artificial Intelligence (AI) algorithms and available High-Performance Computing (HPC) power stimulates the expeditious development of AI components with heterogeneous designs. Consequently, the need for cross-stack performance benchmarking of AI-HPC systems has rapidly emerged. In particular, the de facto HPC benchmark, LINPACK, cannot reflect the AI computing power and input/output performance without a representative workload. Current popular AI benchmarks, such as MLPerf, have a fixed problem size and therefore limited scalability. To address these issues, we propose an end-to-end benchmark suite utilizing automated machine learning, which not only represents real AI scenarios, but also is auto-adaptively scalable to various scales of machines. We implement the algorithms in a highly parallel and flexible way to ensure the efficiency and optimization potential on diverse systems with customizable configurations. We utilize Operations Per Second (OPS), which is measured in an analytical and systematic approach, as a major metric to quantify the AI performance. We perform evaluations on various systems to ensure the benchmark's stability and scalability, from 4 nodes with 32 NVIDIA Tesla T4 (56.1 Tera-OPS measured) up to 512 nodes with 4096 Huawei Ascend 910 (194.53 Peta-OPS measured), and the results show near-linear weak scalability. With a flexible workload and single metric, AIPerf can easily scale on and rank AI-HPC, providing a powerful benchmark suite for the coming supercomputing era.
Graph pattern matching, which aims to discover structural patterns in graphs, is considered one of the most fundamental graph mining problems in many real applications. Despite previous efforts, existing systems face two main challenges. First, inherent symmetry existing in patterns can introduce a large amount of redundant computation. Second, different matching orders for a pattern have significant performance differences and are quite hard to predict. When these factors are mixed, this problem becomes extremely complicated. High efficient pattern matching remains an open problem currently.To address these challenges, we propose GraphPi, a high performance distributed pattern matching system. GraphPi utilizes a new algorithm based on 2-cycles in group theory to generate multiple sets of asymmetric restrictions, where each set can eliminate redundant computation completely. We further design an accurate performance model to determine the optimal matching order and asymmetric restriction set for efficient pattern matching. We evaluate GraphPi on Tianhe-2A supercomputer. Results show that GraphPi outperforms the state-ofthe-art system, by up to 105× for 6 real-world graph datasets on a single node. We also scale GraphPi to 1,024 computing nodes (24,576 cores).
The plethora of complex artificial intelligence (AI) algorithms and available high performance computing (HPC) power stimulates the convergence of AI and HPC. The expeditious development of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.