Li metal anodes are going through a great revival but they still encounter grand challenges. One often neglected issue is that most reported Li metal anodes are only cyclable under relatively low current density (<5 mA cm−2) and small areal capacity (<5 mAh cm−2), which essentially limits their high‐power applications and results in ineffective Li utilization (<1%). Herein, it is reported that surface alloyed Li metal anodes can enable reversible cycling with ultrafast rate and ultralarge areal capacity. Low‐cost Si wafers are used and are chemically etched down to 20–30 µm membranes. Simply laminating a Si membrane onto Li foil results in the formation of LixSi alloy film fused onto Li metal with mechanical robustness and high Li‐ion conductivity. Symmetric cell measurements show that the surface alloyed Li anode has excellent cycling stability, even under high current density up to 25 mA cm−2 and unprecedented areal capacity up to 100 mAh cm−2. Furthermore, the surface alloyed Li anode is paired with amorphous MoS3 cathode and achieves remarkable full‐cell performance.
A metal-, azide- and CF3-reagent free approach for the synthesis of 5-trifluoromethyl-1,2,3-triazoles via base-mediated cascade annulation of diazo compounds with trifluoroacetimidoyl chlorides has been developed. Notable advantages of the reaction...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.