The analysis of video compression history is one of the important issues in video forensics. It can assist forensics analysts in many ways, e.g., to determine whether a video is original or potentially tampered with, or to evaluate the real quality of a re-encoded video, etc. In the existing literature, however, there are very few works targeting videos in HEVC format (the most recent standard), especially for the issue of the detection of transcoded videos. In this paper, we propose a novel method based on the statistics of Prediction Units (PUs) to detect transcoded HEVC videos from AVC format. According to the analysis of the footprints of HEVC videos, the frequencies of PUs (whether in symmetric patterns or not) are distinguishable between original HEVC videos and transcoded ones. The reason is that previous AVC encoding disturbs the PU partition scheme of HEVC. Based on this observation, a 5D and a 25D feature set are extracted from I frames and P frames, respectively, and are combined to form the proposed 30D feature set, which is finally fed to an SVM classifier. To validate the proposed method, extensive experiments are conducted on a dataset consisting of CIF (352 × 288) and HD 720p videos with a diversity of bitrates and different encoding parameters. Experimental results show that the proposed method is very effective at detecting transcoded HEVC videos and outperforms the most recent work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.