The Circular Electron-Positron Collider (CEPC) is one of the largest projects planned for high energy physics in China. It would serve first as a Higgs factory and then upgrade to a hadron collider. In this paper we give the 50 km and 100 km design for both single ring and double ring schemes, including Z boson, W boson and Higgs boson, by using an optimized method. Also, we give the potential of CEPC running at the Z and W poles. We analyse the relationship of luminosity with circumference and filling factor, which gives a way to evaluate the choice of geometry, and compare the nominal performances of CEPC-SPPC, LHC and FCC.
In this paper, a consistent calculation method for the CEPC parameter choice with a crab waist scheme is reported. A crosscheck of luminosity with beam–beam simulations has been done. With this new scheme, a higher Higgs luminosity (+[Formula: see text]170%) can be reached while keeping Pre-CDR beam power or the beam power (19 MW) can be reduced while keeping the same Pre-CDR luminosity. CEPC is compatible with W and Z experiment. The luminosity for Z is at the level of [Formula: see text]. Requirement for energy acceptance of Higgs has been reduced to 1.5% by enlarging the ring to 100 km. The arc optics and the Final Focus System (FFS) with crab sextupoles have been designed, and also some primary Dynamic Aperture (DA) results were introduced.
A future Circular Electron Positron Collider (CEPC) has been proposed by China with the main goal of studying the Higgs boson. Its baseline design, chosen on the basis of its performance, is a double ring scheme; an alternative design is a partial double ring scheme which reduces the budget while maintaining an adequate performance. This paper will present the collider ring lattice design for the double ring scheme. The CEPC will also work as a W and a Z factory. For the W and Z modes, except in the RF region, compatible lattices were obtained by scaling down the magnet strength with energy.
In order to avoid the pretzel orbit, CEPC is proposed to use partial double ring scheme in CDR. In this paper, a general method of how to make an consistent machine parameter design of CEPC with crab-waist by using analytical expression of maximum beam–beam tune shift and beamstrahlung beam lifetime started from given IP vertical beta, beam power and other technical limitations were developed. FFS with crab sextupoles will be developed and the arc lattice will be redesigned to acheive the lower emittance for crab-waist scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.