In this paper, we propose a learning-based approach to the task of automatically extracting a "wireframe" representation for images of cluttered man-made environments. The wireframe (see Fig. 1) contains all salient straight lines and their junctions of the scene that encode efficiently and accurately large-scale geometry and object shapes. To this end, we have built a very large new dataset of over 5,000 images with wireframes thoroughly labelled by humans. We have proposed two convolutional neural networks that are suitable for extracting junctions and lines with large spatial support, respectively. The networks trained on our dataset have achieved significantly better performance than stateof-the-art methods for junction detection and line segment detection, respectively. We have conducted extensive experiments to evaluate quantitatively and qualitatively the wireframes obtained by our method, and have convincingly shown that effectively and efficiently parsing wireframes for images of man-made environments is a feasible goal within reach. Such wireframes could benefit many important visual tasks such as feature correspondence, 3D reconstruction, vision-based mapping, localization, and navigation. The data and source code are available at https: //github.com/huangkuns/wireframe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.