ZrO2 nanoparticles, ZrO2 (P) and ZrO2 (H), with different tetragonal phase contents, were prepared. ZrO2 (P) possessed higher tetragonal phase content than ZrO2 (H). Ni/ZrO2 catalysts (10% (w/w)), using ZrO2 (P) and ZrO2 (H) as supports, were prepared using an impregnation method, and were characterized using XRD, Raman, H2-TPR, XPS, and H2-TPD techniques. Their catalytic performance in maleic anhydride hydrogenation was tested. The Ni/ZrO2 (P) catalyst exhibited stronger metal-support interactions than the Ni/ZrO2 (H) catalyst because of its higher number of oxygen vacancies and the low-coordinated oxygen ions on its surface. Consequently, smaller Ni crystallites and a higher C=C hydrogenation activity for maleic anhydride to succinic anhydride were obtained over a Ni/ZrO2 (P) catalyst. However, the C=O hydrogenation activity of Ni/ZrO2 (P) catalyst was much lower than that of the Ni/ZrO2 (H) catalyst. A 43.5% yield of γ-butyrolacetone was obtained over the Ni/ZrO2 (H) catalyst at 210 °C and 5 MPa of H2 pressure, while the yield of γ-butyrolactone was only 2.8% over the Ni/ZrO2 (P) catalyst under the same reaction conditions. In situ FT-IR characterization demonstrated that the high C=O hydrogenation activity for the Ni/ZrO2 (H) catalyst could be attributed to the surface synergy between active metallic nickel species and relatively electron-deficient oxygen vacancies.
A series of Sc-doped ZrO2 supports, with Sc2O3 content in the range of 0 to 7.5% (mol/mol), were prepared using the hydrothermal method. Ni/Sc-doped ZrO2 catalysts with nickel loading of 10% (w/w) were prepared using impregnation method, and characterized with the use of XRD, Raman, H2 temperature-programmed reduction (H2-TPR), H2 temperature-programmed desorption (H2-TPD), XPS, and in situ FT-IR techniques. The catalytic performances of Ni/Sc-doped ZrO2 catalysts in maleic anhydride hydrogenation were tested. The results showed that the introduction of Sc3+ into ZrO2 support could effectively manipulate the distribution of maleic anhydride hydrogenation products. γ-butyrolactone was the major hydrogenation product over Sc-free Ni/ZrO2 catalyst with selectivity as high as 65.8% at 210 °C and 5 MPa of H2 pressure. The Ni/Sc-doped ZrO2 catalyst, with 7.5 mol% of Sc2O3 content, selectively catalyzed maleic anhydride hydrogenation to succinic anhydride, the selectivity towards succinic anhydride was up to 97.6% under the same reaction condition. The results of the catalysts’ structure–activity relationships revealed that there was an interdependence between the surface structure of ZrO2-based support and the C=O hydrogenation performance of the ZrO2-based supported nickel catalysts. By controlling the Sc2O3 content, the surface structure of ZrO2-based support could be regulated effectively. The different surface structure of ZrO2-based supports, resulted in the different degree of interaction between the nickel species and ZrO2-based supports; furthermore, the different interaction led to the different surface oxygen vacancies electron properties of ZrO2-based supported nickel catalysts and the C=O hydrogenation activity of the catalyst. This result provides new insight into the effect of ZrO2 support on the selective hydrogenation activity of ZrO2-supported metal catalysts and contributes to the design of selective hydrogenation catalysts for other unsaturated carbonyl compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.