Cellular mechanical metamaterials are a special class of materials, whose mechanical properties are primarily determined by their geometry. But capturing the nonlinear mechanical behavior of these materials, especially with complex...
Time-and temperature-dependent structural relaxation (physical aging) of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymers was investigated by calorimetry. Our study reveals the interplay of the relaxation responses of the two components of the copolymer in an intermediate temperature regime. That is, when the testing temperature is closely below the glass transition temperatures of PS and PMMA, structural relaxation in these polymer phases takes place concurrently, the corresponding thermogram displays partially superposed dual endothermic peaks as a feature of physical aging in the diblock copolymers. The aging response for each component is identified from a curve fitting method and analyzed by the relaxation of enthalpy. Comparing with the homopolymer analogs, the PS and PMMA in diblock copolymers show enhanced aging rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.