Molecular changes elicited by common bean (Phaseolus vulgaris L.) in response to Fusarium oxysproum f. sp. Phaseoli (FOP) remain elusive. We studied the changes in root metabolism during common bean-FOP interactions using a combined de novo transcriptome and metabolome approach. Our results demonstrated alterations of transcript levels and metabolite concentrations in common bean roots 24 h post infection as compared to control. The transcriptome and metabolome responses in common bean roots revealed significant changes in structural defense i.e., cell-wall loosening and weakening characterized by hyper accumulation of cell-wall loosening and degradation related transcripts. The levels of pathogenesis related genes were significantly higher upon FOP inoculation. Interestingly, we found the involvement of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in signal transduction in response to FOP infection. Our results confirmed that hormones have strong role in signaling pathways i.e., salicylic acid, jasmonate, and ethylene pathways. FOP induced energy metabolism and nitrogen mobilization in infected common bean roots as compared to control. Importantly, the flavonoid biosynthesis pathway was the most significantly enriched pathway in response to FOP infection as revealed by the combined transcriptome and metabolome analysis. Overall, the observed modulations in the transcriptome and metabolome flux as outcome of several orchestrated molecular events are determinant of host's role in common bean-FOP interactions.
Common bean (Phaseolus vulgaris L.) is a major legume and is frequently attacked by fungal pathogens, including Fusarium solani f. sp. phaseoli (FSP), which cause Fusarium root rot. FSP substantially reduces common bean yields across the world, including China, but little is known about how common bean plants defend themselves against this fungal pathogen. In the current study, we combined next-generation RNA sequencing and metabolomics techniques to investigate the changes in gene expression and metabolomic processes in common bean infected with FSP. There were 29,722 differentially regulated genes and 300 differentially regulated metabolites between control and infected plants. The combined omics approach revealed that FSP is perceived by PAMP-triggered immunity and effector-triggered immunity. Infected seedlings showed that common bean responded by cell wall modification, ROS generation, and a synergistic hormone-driven defense response. Further analysis showed that FSP induced energy metabolism, nitrogen mobilization, accumulation of sugars, and arginine and proline metabolism. Importantly, metabolic pathways were most significantly enriched, which resulted in increased levels of metabolites that were involved in the plant defense response. A correspondence between the transcript pattern and metabolite profile was observed in the discussed pathways. The combined omics approach enhances our understanding of the less explored pathosystem and will provide clues for the development of common bean cultivars’ resistant to FSP.
The South American tomato pinworm, Tuta absoluta, is one of the most destructive insect pests in Solanaceae crops, particularly in tomatoes. Current methods of management have proven somewhat effective but still require a more efficacious management strategy to limit its havoc on crop yield. Tomato is much more predisposed to T. absoluta as compared with other plants such as eggplants, but the underlying causes have not been fully determined. We conducted this study to unravel the volatile organic compounds (VOCs) and primary/secondary metabolites that account for the differential response of tomatoes and eggplants to T. absoluta infestation. We performed widely targeted comparative metabolome and volatilome profiling by ultraperformance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) and headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry (HS-SPME/GC-MS), respectively, on eggplants and tomatoes under control and T. absoluta infestation conditions. Overall, 141 VOCs and 797 primary/secondary metabolites were identified, largely dominated by aldehyde, alcohols, alkanes, amine, aromatics, a heterocyclic compound, ketone, olefin, phenol, and terpenes. Most of the VOCs and primary/secondary metabolites from the terpene class were largely differentially regulated in eggplants compared with tomatoes. Eggplants emitted several compounds that were lower or completely absent in tomatoes either under control conditions or after T. absoluta infestation. The results from an electroantennogram showed that 35 differentially accumulated VOCs could elicit female T. absoluta response, implying that these volatile compounds significantly alter the behavior of this pest. These findings demonstrated that differentially accumulated metabolites and volatile compounds play major roles in eggplant resistance to T. absoluta infestation as these compounds were regulated upon attack by T. absoluta. Our findings can assist in integrated pest management efforts by developing appropriate control measures against T. absoluta in Solanaceae production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.