Bronchopulmonary dysplasia (BPD) is one of the most common complications in premature infants. This disease is caused by long-time use of supplemental oxygen, which seriously affects the lung function of the child and imposes a heavy burden on the family and society. This research aims to adopt the method of ensemble learning in machine learning, combining the Boruta algorithm and the random forest algorithm to determine the predictors of premature infants with BPD and establish a predictive model to help clinicians to conduct an optimal treatment plan. Data were collected from clinical records of 996 premature infants treated in the neonatology department of Liuzhou Maternal and Child Health Hospital in Western China. In this study, premature infants with congenital anomaly, premature infants who died, and premature infants with incomplete data before the diagnosis of BPD were excluded from the data set. After exclusion, we included 648 premature infants in the study. The Boruta algorithm and 10-fold cross-validation were used for feature selection in this study. Six variables were finally selected from the 26 variables, and the random forest model was established. The area under the curve (AUC) of the model was as high as 0.929 with excellent predictive performance. The use of machine learning methods can help clinicians predict the disease so as to formulate the best treatment plan.
In this article, based on wavelet reconstruction and fractal dimension, a medical image authentication method is implemented. According to the local and global methods, the regularity of the mutation structure in the carrier information is analyzed through a measurement defined in the medical image transformation domain. To eliminate the redundancy of the reconstructed data, the fractal dimension is used to reduce the attributes of the reconstructed wavelet coefficients. According to the singularity of the fractal dimension of the block information, the key features are extracted and the fractal feature is constructed as the authentication feature of the images. The experimental results show that the authentication scheme has good robustness against attacks, such as JPEG compression, multiplicative noise, salt and pepper noise, Gaussian noise, image rotation, scaling attack, sharpening, clipping attack, median filtering, contrast enhancement, and brightness enhancement.
The transmission of digital medical information is affected by data compression, noise, scaling, labeling, and other factors. At the same time, medical data may be illegally copied and maliciously tampered with without authorization. Therefore, the copyright protection and integrity authentication of medical information are worthy of attention. In this paper, based on the wavelet packet and energy entropy, a new method of medical image authentication is designed. The proposed method uses the sliding window to measure the energy of the detail information. In the time–frequency data distribution, the local details of the data are mined. The complexity of energy is quantitatively described to highlight the valuable information. Based on the energy weight, the local energy entropy is constructed and normalized. The adjusted entropy value is used as the feature vector of the authentication information. A series of experiments show that the authentication method has good robustness against shearing attacks, median filtering, contrast enhancement, brightness enhancement, salt-and-pepper noise, Gaussian noise, multiplicative noise, image rotation, scaling attacks, sharpening, JPEG compression, and other attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.