Hydrobatic AUVs are very agile, and can perform challenging maneuvers that encompass the full 0 • -360 • flight envelope. Such AUVs can be beneficial in novel use cases in ocean production, environmental sensing, and security, by enabling new capabilities for docking, inspection, or under-ice operations. To further explore their capabilities in such scenarios, it is crucial to be able to model their flight dynamics over the full envelope, which includes strong nonlinear effects and turbulence at high angles of attack. With accurate and efficient simulation models, new hydrobatic maneuvers can be generated and control strategies can be developed. Therefore, this article contributes with a strategy to perform efficient and accurate simulations of hydrobatic maneuvers in real time. A multifidelity hydrodynamic database is synthesized by combining analytical, semiempirical, and numerical methods, thereby capturing fluid forces and moments over the full envelope. A component buildup workflow is used to assemble a nonlinear flight dynamics model using lookup tables generated from the database. This simulation model is used to perform real-time simulations of advanced hydrobatic maneuvers. Simulation results show agreement with literature and experiment, and the simulator shows utility as a development tool in designing new maneuvers and control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.