Power transmission networks play an important role in smart girds. Fast and accurate faulty-equipment identification is critical for fault diagnosis of power systems; however, it is rather difficult due to uncertain and incomplete fault alarm messages in fault events. This paper proposes a new fault diagnosis method of transmission networks in the framework of membrane computing. We first propose a class of spiking neural P systems with self-updating rules (srSNPS) considering biological apoptosis mechanism and its self-updating matrix reasoning algorithm. The srSNPS, for the first time, effectively unitizes the attribute reduction ability of rough sets and the apoptosis mechanism of biological neurons in a P system, where the apoptosis algorithm for condition neurons is devised to delete redundant information in fault messages. This simplifies the complexity of the srSNPS model and allows us to deal with the uncertainty and incompleteness of fault information in an objective way without using historical statistics and expertise. Then, the srSNPS-based fault diagnosis method is proposed. It is composed of the transmission network partition, the SNPS model establishment, the pulse value correction and computing, and the protection device behavior evaluation, where the first two components can be finished before failures to save diagnosis time. Finally, case studies based on the IEEE 14- and IEEE 118-bus systems verify the effectiveness and superiority of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.